TY - JOUR A1 - Dunsing, Valentin A1 - Irmscher, Tobias A1 - Barbirz, Stefanie A1 - Chiantia, Salvatore T1 - Purely Polysaccharide-Based Biofilm Matrix Provides Size-Selective Diffusion Barriers for Nanoparticles and Bacteriophages JF - Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences N2 - Biofilms are complex mixtures of proteins, DNA, and polysaccharides surrounding bacterial communities as protective barriers that can be biochemically modified during the bacterial life cycle. However, their compositional heterogeneity impedes a precise analysis of the contributions of individual matrix components to the biofilm structural organization. To investigate the structural properties of glycan-based biofilms, we analyzed the diffusion dynamics of nanometer-sized objects in matrices of the megadalton-sized anionic polysaccharide, stewartan, the major biofilm component of the plant pathogen, Pantoea stewartii. Fluorescence correlation spectroscopy and single-particle tracking of nanobeads and bacteriophages indicated notable subdiffusive dynamics dependent on probe size and stewartan concentration, in contrast to free diffusion of small molecules. Stewartan enzymatic depolymerization by bacteriophage tailspike proteins rapidly restored unhindered diffusion. We, thus, hypothesize that the glycan polymer stewartan determines the major physicochemical properties of the biofilm, which acts as a selective diffusion barrier for nanometer-sized objects and can be controlled by enzymes. Y1 - 2019 U6 - https://doi.org/10.1021/acs.biomac.9b00938 SN - 1525-7797 SN - 1526-4602 VL - 20 IS - 10 SP - 3842 EP - 3854 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Dunsing, Valentin A1 - Irmscher, Tobias A1 - Barbirz, Stefanie A1 - Chiantia, Salvatore T1 - Microviscosity of bacterial biofilm matrix characterized by fluorescence correlation spectroscopy and single particle tracking T2 - European biophysics journal : with biophysics letters ; an international journal of biophysics Y1 - 2019 U6 - https://doi.org/https://doi.org/10.1007/s00249-019-01373-4 SN - 0175-7571 SN - 1432-1017 VL - 48 SP - S115 EP - S115 PB - Springer CY - New York ER - TY - JOUR A1 - Broeker, Nina K. A1 - Roske, Yvette A1 - Valleriani, Angelo A1 - Stephan, Mareike Sophia A1 - Andres, Dorothee A1 - Koetz, Joachim A1 - Heinemann, Udo A1 - Barbirz, Stefanie T1 - Time-resolved DNA release from an O-antigen-specific Salmonella bacteriophage with a contractile tail JF - The journal of biological chemistry N2 - Myoviruses, bacteriophages with T4-like architecture, must contract their tails prior to DNA release. However, quantitative kinetic data on myovirus particle opening are lacking, although they are promising tools in bacteriophage-based antimicrobial strategies directed against Gram-negative hosts. For the first time, we show time-resolved DNA ejection from a bacteriophage with a contractile tail, the multi-O-antigen-specific Salmonella myovirus Det7. DNA release from Det7 was triggered by lipopolysaccharide (LPS) O-antigen receptors and notably slower than in noncontractile-tailed siphoviruses. Det7 showed two individual kinetic steps for tail contraction and particle opening. Our in vitro studies showed that highly specialized tailspike proteins (TSPs) are necessary to attach the particle to LPS. A P22-like TSP confers specificity for the Salmonella Typhimurium O-antigen. Moreover, crystal structure analysis at 1.63 angstrom resolution confirmed that Det7 recognized the Salmonella Anatum O-antigen via an E15-like TSP, DettilonTSP. DNA ejection triggered by LPS from either host showed similar velocities, so particle opening is thus a process independent of O-antigen composition and the recognizing TSP. In Det7, at permissive temperatures TSPs mediate O-antigen cleavage and couple cell surface binding with DNA ejection, but no irreversible adsorption occurred at low temperatures. This finding was in contrast to short-tailed Salmonella podoviruses, illustrating that tailed phages use common particle-opening mechanisms but have specialized into different infection niches. KW - bacteriophage KW - lipopolysaccharide (YLPS) KW - structural biology KW - DNA viruses KW - glycobiology KW - fluorescence KW - Salmonella enterica KW - contractile tail KW - DNA ejection KW - O-antigen specificity KW - Salmonella myovirus KW - tailspike protein KW - molecular machine Y1 - 2019 U6 - https://doi.org/10.1074/jbc.RA119.008133 SN - 1083-351X VL - 294 IS - 31 SP - 11751 EP - 11761 PB - American Society for Biochemistry and Molecular Biology CY - Bethesda ER -