TY - JOUR A1 - Geyer, Juliane A1 - Kiefer, Iris A1 - Kreft, Stefan A1 - Chavez, Veronica A1 - Salafsky, Nick A1 - Jeltsch, Florian A1 - Ibisch, Pierre L. T1 - Classification of climate-change-induced stresses on biological diversity JF - Conservation biology : the journal of the Society for Conservation Biology N2 - Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. KW - adaptation of conservation strategies KW - adaptive management KW - climate change KW - conservation planning KW - conservation targets KW - hierarchical framework KW - threats to biological diversity Y1 - 2011 U6 - https://doi.org/10.1111/j.1523-1739.2011.01676.x SN - 0888-8892 VL - 25 IS - 4 SP - 708 EP - 715 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Geyer, Juliane A1 - Strixner, Lena A1 - Kreft, Stefan A1 - Jeltsch, Florian A1 - Ibisch, Pierre L. T1 - Adapting conservation to climate change: a case study on feasibility and implementation in Brandenburg, Germany JF - Regional environmental change N2 - Conservation actions need to account for global climate change and adapt to it. The body of the literature on adaptation options is growing rapidly, but their feasibility and current state of implementation are rarely assessed. We discussed the practicability of adaptation options with conservation managers analysing three fields of action: reducing the vulnerability of conservation management, reducing the vulnerability of conservation targets (i.e. biodiversity) and climate change mitigation. For all options, feasibility, current state of implementation and existing obstacles to implementation were analysed, using the Federal State of Brandenburg, Germany, as a case study. Practitioners considered a large number of options useful, most of which have already been implemented at least in part. Those options considered broadly implemented resemble mainly conventional measures of conservation without direct relation to climate change. Managers are facing several obstacles for adapting to climate change, including political reluctance to change, financial and staff shortages in conservation administrations and conflictive EU funding schemes in agriculture. A certain reluctance to act, due to the high degree of uncertainty with regard to climate change scenarios and impacts, is widespread. A lack of knowledge of appropriate methods such as adaptive management often inhibits the implementation of adaptation options in the field of planning and management. Based on the findings for Brandenburg, we generally conclude that it is necessary to focus in particular on options that help to reduce vulnerability of conservation management itself, i.e. those that enhance management effectiveness. For instance, adaptive and proactive risk management can be applied as a no-regrets option, independently from specific climate change scenarios or impacts, strengthening action under uncertainty. KW - Climate change KW - Adaptation options KW - Nature conservation management KW - Vulnerability Y1 - 2015 U6 - https://doi.org/10.1007/s10113-014-0609-9 SN - 1436-3798 SN - 1436-378X VL - 15 IS - 1 SP - 139 EP - 153 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Geyer, Juliane A1 - Kreft, Stefan A1 - Jeltsch, Florian A1 - Ibisch, Pierre L. T1 - Assessing climate change-robustness of protected area management plans-The case of Germany JF - PLoS one N2 - Protected areas are arguably the most important instrument of biodiversity conservation. To keep them fit under climate change, their management needs to be adapted to address related direct and indirect changes. In our study we focus on the adaptation of conservation management planning, evaluating management plans of 60 protected areas throughout Germany with regard to their climate change-robustness. First, climate change-robust conservation management was defined using 11 principles and 44 criteria, which followed an approach similar to sustainability standards. We then evaluated the performance of individual management plans concerning the climate change-robustness framework. We found that climate change-robustness of protected areas hardly exceeded 50 percent of the potential performance, with most plans ranking in the lower quarter. Most Natura 2000 protected areas, established under conservation legislation of the European Union, belong to the sites with especially poor performance, with lower values in smaller areas. In general, the individual principles showed very different rates of accordance with our principles, but similarly low intensity. Principles with generally higher performance values included holistic knowledge management, public accountability and acceptance as well as systemic and strategic coherence. Deficiencies were connected to dealing with the future and uncertainty. Lastly, we recommended the presented principles and criteria as essential guideposts that can be used as a checklist for working towards more climate change-robust planning. Y1 - 2017 U6 - https://doi.org/10.1371/journal.pone.0185972 SN - 1932-6203 VL - 12 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Kottmeier, Christoph A1 - Agnon, Amotz A1 - Al-Halbouni, Djamil A1 - Alpert, Pinhas A1 - Corsmeier, Ulrich A1 - Dahm, Torsten A1 - Eshel, Adam A1 - Geyer, Stefan A1 - Haas, Michael A1 - Holohan, Eoghan A1 - Kalthoff, Norbert A1 - Kishcha, Pavel A1 - Krawczyk, Charlotte A1 - Lati, Joseph A1 - Laronne, Jonathan B. A1 - Lott, Friederike A1 - Mallast, Ulf A1 - Merz, Ralf A1 - Metzger, Jutta A1 - Mohsen, Ayman A1 - Morin, Efrat A1 - Nied, Manuela A1 - Roediger, Tino A1 - Salameh, Elias A1 - Sawarieh, Ali A1 - Shannak, Benbella A1 - Siebert, Christian A1 - Weber, Michael T1 - New perspectives on interdisciplinary earth science at the Dead Sea: The DESERVE project JF - The science of the total environment : an international journal for scientific research into the environment and its relationship with man N2 - The Dead Sea region has faced substantial environmental challenges in recent decades, including water resource scarcity, similar to 1 m annual decreases in the water level, sinkhole development, ascending-brine freshwater pollution, and seismic disturbance risks. Natural processes are significantly affected by human interference as well as by climate change and tectonic developments over the long term. To get a deep understanding of processes and their interactions, innovative scientific approaches that integrate disciplinary research and education are required. The research project DESERVE (Helmholtz Virtual Institute Dead Sea Research Venue) addresses these challenges in an interdisciplinary approach that includes geophysics, hydrology, and meteorology. The project is implemented by a consortium of scientific institutions in neighboring countries of the Dead Sea (Israel, Jordan, Palestine Territories) and participating German Helmholtz Centres (KIT, GFZ, UFZ). A new monitoring network of meteorological, hydrological, and seismic/geodynamic stations has been established, and extensive field research and numerical simulations have been undertaken. For the first time, innovative measurement and modeling techniques have been applied to the extreme conditions of the Dead Sea and its surroundings. The preliminary results show the potential of these methods. First time ever performed eddy covariance measurements give insight into the governing factors of Dead Sea evaporation. High-resolution bathymetric investigations reveal a strong correlation between submarine springs and neo-tectonic patterns. Based on detailed studies of stratigraphy and borehole information, the extension of the subsurface drainage basin of the Dead Sea is now reliably estimated. Originality has been achieved in monitoring flash floods in an arid basin at its outlet and simultaneously in tributaries, supplemented by spatio-temporal rainfall data. Low-altitude, high resolution photogrammetry, allied to satellite image analysis and to geophysical surveys (e.g. shear-wave reflections) has enabled a more detailed characterization of sinkhole morphology and temporal development and the possible subsurface controls thereon. All the above listed efforts and scientific results take place with the interdisciplinary education of young scientists. They are invited to attend joint thematic workshops and winter schools as well as to participate in field experiments. (C) 2015 The Authors. Published by Elsevier B.V. KW - Climate KW - Water balance KW - Flash floods KW - Seismicity KW - Sinkholes KW - Education Y1 - 2016 U6 - https://doi.org/10.1016/j.scitotenv.2015.12.003 SN - 0048-9697 SN - 1879-1026 VL - 544 SP - 1045 EP - 1058 PB - Elsevier CY - Amsterdam ER -