TY - JOUR A1 - Serrano-Munoz, Itziar A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Nolze, Gert A1 - Saliwan-Neumann, Romeo A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - The residual stress in as-built laser powder bed fusion IN718 alloy as a consequence of the scanning strategy induced microstructure JF - Scientific reports N2 - The effect of two types of scanning strategies on the grain structure and build-up of Residual Stress (RS) has been investigated in an as-built IN718 alloy produced by Laser Powder Bed Fusion (LPBF). The RS state has been investigated by X-ray diffraction techniques. The microstructural characterization was performed principally by Electron Backscatter Diffraction (EBSD), where the application of a post-measurement refinement technique enables small misorientations (< 2 degrees) to be resolved. Kernel average misorientation (KAM) distributions indicate that preferably oriented columnar grains contain higher levels of misorientation, when compared to elongated grains with lower texture. The KAM distributions combined with X-ray diffraction stress maps infer that the increased misorientation is induced via plastic deformation driven by the thermal stresses, acting to self-relieve stress. The possibility of obtaining lower RS states in the build direction as a consequence of the influence of the microstructure should be considered when envisaging scanning strategies aimed at the mitigation of RS. KW - EBSD KW - components KW - deposition KW - diffraction KW - distortion KW - heat-treatment KW - mechanical properties KW - melting slm KW - superalloys KW - texture Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-71112-9 SN - 2045-2322 VL - 10 IS - 1 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Sprengel, Maximilian A1 - Mohr, Gunther A1 - Altenburg, Simon J. A1 - Evans, Alexander A1 - Serrano-Munoz, Itziar A1 - Kromm, Arne A1 - Pirling, Thilo A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Triaxial residual stress in Laser Powder Bed Fused 316L BT - effects of interlayer time and scanning velocity JF - Advanced engineering materials N2 - The control of residual stress (RS) remains a challenge in the manufacturing of metallic parts using the laser powder bed fusion process (LPBF). This layer-by-layer manufacturing approach gives rise to complex triaxial RS distributions, which require extensive characterization effort for a broader acceptance of LPBF in industry. This study focuses on the distribution of bulk triaxial RS and surface RS in LPBF austenitic steel 316L. The RS are determined by X-ray and neutron diffraction to characterize the RS distribution. Variations in the LPBF parameters interlayer time (ILT) and scanning velocity and their influence on the temperature distribution and resulting RS is investigated using thermographic data from in situ process monitoring. The RS in the LPBF 316L is tensile at the surface and compressive in the bulk. The RS is directly related to the thermal history of the part as shown by the in situ thermography data. Shorter ILT leads to higher temperatures of the part during the manufacturing, which decrease the RS and RS formation mechanisms. Interestingly, the surface RS does not agree with this observation. This study highlights the benefit of using multiple RS determination methods and in situ thermography monitoring to characterize the RS in LPBF processed parts. KW - in situ thermography KW - interlayer time KW - laser powder bed fusions KW - triaxial residual stresses KW - X-ray and neutron diffractions Y1 - 2021 U6 - https://doi.org/10.1002/adem.202101330 SN - 1438-1656 SN - 1527-2648 VL - 24 IS - 6 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Serrano-Munoz, Itziar A1 - Fritsch, Tobias A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Diffraction-based residual stress characterization in laser additive manufacturing of metals JF - Metals : open access journal N2 - Laser-based additive manufacturing methods allow the production of complex metal structures within a single manufacturing step. However, the localized heat input and the layer-wise manufacturing manner give rise to large thermal gradients. Therefore, large internal stress (IS) during the process (and consequently residual stress (RS) at the end of production) is generated within the parts. This IS or RS can either lead to distortion or cracking during fabrication or in-service part failure, respectively. With this in view, the knowledge on the magnitude and spatial distribution of RS is important to develop strategies for its mitigation. Specifically, diffraction-based methods allow the spatial resolved determination of RS in a non-destructive fashion. In this review, common diffraction-based methods to determine RS in laser-based additive manufactured parts are presented. In fact, the unique microstructures and textures associated to laser-based additive manufacturing processes pose metrological challenges. Based on the literature review, it is recommended to (a) use mechanically relaxed samples measured in several orientations as appropriate strain-free lattice spacing, instead of powder, (b) consider that an appropriate grain-interaction model to calculate diffraction-elastic constants is both material- and texture-dependent and may differ from the conventionally manufactured variant. Further metrological challenges are critically reviewed and future demands in this research field are discussed. KW - laser-based additive manufacturing KW - residual stress analysis KW - X-ray and KW - neutron diffraction KW - diffraction-elastic constants KW - strain-free lattice KW - spacing Y1 - 2021 U6 - https://doi.org/10.3390/met11111830 SN - 2075-4701 VL - 11 IS - 11 PB - MDPI CY - Basel ER -