TY - JOUR A1 - Mann, Michael E. A1 - Rahmstorf, Stefan A1 - Kornhuber, Kai A1 - Steinman, Byron A. A1 - Miller, Sonya K. A1 - Petri, Stefan A1 - Coumou, Dim T1 - Projected changes in persistent extreme summer weather events BT - The role of quasi-resonant amplification JF - Science Advances N2 - Persistent episodes of extreme weather in the Northern Hemisphere summer have been associated with high-amplitude quasi-stationary atmospheric Rossby waves, with zonal wave numbers 6 to 8 resulting from the phenomenon of quasi-resonant amplification (QRA). A fingerprint for the occurrence of QRA can be defined in terms of the zonally averaged surface temperature field. Examining state-of-the-art [Coupled Model Intercomparison Project Phase 5 (CMIP5)] climate model projections, we find that QRA events are likely to increase by similar to 50% this century under business-as-usual carbon emissions, but there is considerable variation among climate models. Some predict a near tripling of QRA events by the end of the century, while others predict a potential decrease. Models with amplified Arctic warming yield the most pronounced increase in QRA events. The projections are strongly dependent on assumptions regarding the nature of changes in radiative forcing associated with anthropogenic aerosols over the next century. One implication of our findings is that a reduction in midlatitude aerosol loading could actually lead to Arctic de-amplification this century, ameliorating potential increases in persistent extreme weather events. Y1 - 2018 U6 - https://doi.org/10.1126/sciadv.aat3272 SN - 2375-2548 VL - 4 IS - 10 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - GEN A1 - Mann, Michael E. A1 - Rahmstorf, Stefan A1 - Kornhuber, Kai A1 - Steinman, Byron A. A1 - Miller, Sonya K. A1 - Petri, Stefan A1 - Coumou, Dim T1 - Projected changes in persistent extreme summer weather events BT - the role of quasi-resonant amplification T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Persistent episodes of extreme weather in the Northern Hemisphere summer have been associated with high-amplitude quasi-stationary atmospheric Rossby waves, with zonal wave numbers 6 to 8 resulting from the phenomenon of quasi-resonant amplification (QRA). A fingerprint for the occurrence of QRA can be defined in terms of the zonally averaged surface temperature field. Examining state-of-the-art [Coupled Model Intercomparison Project Phase 5 (CMIP5)] climate model projections, we find that QRA events are likely to increase by similar to 50% this century under business-as-usual carbon emissions, but there is considerable variation among climate models. Some predict a near tripling of QRA events by the end of the century, while others predict a potential decrease. Models with amplified Arctic warming yield the most pronounced increase in QRA events. The projections are strongly dependent on assumptions regarding the nature of changes in radiative forcing associated with anthropogenic aerosols over the next century. One implication of our findings is that a reduction in midlatitude aerosol loading could actually lead to Arctic de-amplification this century, ameliorating potential increases in persistent extreme weather events. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 994 KW - planetary wave resonance KW - northern KW - atmosphere KW - attribution KW - circulation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446416 SN - 1866-8372 IS - 994 ER - TY - JOUR A1 - Read, Betsy A. A1 - Kegel, Jessica A1 - Klute, Mary J. A1 - Kuo, Alan A1 - Lefebvre, Stephane C. A1 - Maumus, Florian A1 - Mayer, Christoph A1 - Miller, John A1 - Monier, Adam A1 - Salamov, Asaf A1 - Young, Jeremy A1 - Aguilar, Maria A1 - Claverie, Jean-Michel A1 - Frickenhaus, Stephan A1 - Gonzalez, Karina A1 - Herman, Emily K. A1 - Lin, Yao-Cheng A1 - Napier, Johnathan A1 - Ogata, Hiroyuki A1 - Sarno, Analissa F. A1 - Shmutz, Jeremy A1 - Schroeder, Declan A1 - de Vargas, Colomban A1 - Verret, Frederic A1 - von Dassow, Peter A1 - Valentin, Klaus A1 - Van de Peer, Yves A1 - Wheeler, Glen A1 - Dacks, Joel B. A1 - Delwiche, Charles F. A1 - Dyhrman, Sonya T. A1 - Glöckner, Gernot A1 - John, Uwe A1 - Richards, Thomas A1 - Worden, Alexandra Z. A1 - Zhang, Xiaoyu A1 - Grigoriev, Igor V. A1 - Allen, Andrew E. A1 - Bidle, Kay A1 - Borodovsky, M. A1 - Bowler, C. A1 - Brownlee, Colin A1 - Cock, J. Mark A1 - Elias, Marek A1 - Gladyshev, Vadim N. A1 - Groth, Marco A1 - Guda, Chittibabu A1 - Hadaegh, Ahmad A1 - Iglesias-Rodriguez, Maria Debora A1 - Jenkins, J. A1 - Jones, Bethan M. A1 - Lawson, Tracy A1 - Leese, Florian A1 - Lindquist, Erika A1 - Lobanov, Alexei A1 - Lomsadze, Alexandre A1 - Malik, Shehre-Banoo A1 - Marsh, Mary E. A1 - Mackinder, Luke A1 - Mock, Thomas A1 - Müller-Röber, Bernd A1 - Pagarete, Antonio A1 - Parker, Micaela A1 - Probert, Ian A1 - Quesneville, Hadi A1 - Raines, Christine A1 - Rensing, Stefan A. A1 - Riano-Pachon, Diego Mauricio A1 - Richier, Sophie A1 - Rokitta, Sebastian A1 - Shiraiwa, Yoshihiro A1 - Soanes, Darren M. A1 - van der Giezen, Mark A1 - Wahlund, Thomas M. A1 - Williams, Bryony A1 - Wilson, Willie A1 - Wolfe, Gordon A1 - Wurch, Louie L. T1 - Pan genome of the phytoplankton Emiliania underpins its global distribution JF - Nature : the international weekly journal of science N2 - Coccolithophores have influenced the global climate for over 200 million years(1). These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems(2). They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space(3). Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean(4). Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions. Y1 - 2013 U6 - https://doi.org/10.1038/nature12221 SN - 0028-0836 SN - 1476-4687 VL - 499 IS - 7457 SP - 209 EP - 213 PB - Nature Publ. Group CY - London ER -