TY - GEN A1 - Lever, Fabiano A1 - Mayer, Dennis A1 - Metje, Jan A1 - Alisauskas, Skirmantas A1 - Calegari, Francesca A1 - Düsterer, Stefan A1 - Feifel, Raimund A1 - Niebuhr, Mario A1 - Manschwetus, Bastian A1 - Kuhlmann, Marion A1 - Mazza, Tommaso A1 - Robinson, Matthew Scott A1 - Squibb, Richard J. A1 - Trabattoni, Andrea A1 - Wallner, Måns A1 - Wolf, Thomas J. A. A1 - Gühr, Markus T1 - Core-level spectroscopy of 2-thiouracil at the sulfur L1 and L2,3 edges utilizing a SASE free-electron-laser T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In this paper, we report X-ray absorption and core-level electron spectra of the nucleobase derivative 2-thiouracil at the sulfur L1- and L2,3-edges. We used soft X-rays from the free-electron laser FLASH2 for the excitation of isolated molecules and dispersed the outgoing electrons with a magnetic bottle spectrometer. We identified photoelectrons from the 2p core orbital, accompanied by an electron correlation satellite, as well as resonant and non-resonant Coster–Kronig and Auger–Meitner emission at the L1- and L2,3-edges, respectively. We used the electron yield to construct X-ray absorption spectra at the two edges. The experimental data obtained are put in the context of the literature currently available on sulfur core-level and 2-thiouracil spectroscopy. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1180 KW - X-ray KW - photoelectron KW - sulfur KW - thiouracil KW - nucleobases KW - Coster–Kronig KW - Auger–Meitner KW - NEXAFS KW - FLASH Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524091 SN - 1866-8372 IS - 21 ER - TY - JOUR A1 - Lever, Fabiano A1 - Mayer, Dennis A1 - Metje, Jan A1 - Alisauskas, Skirmantas A1 - Calegari, Francesca A1 - Düsterer, Stefan A1 - Feifel, Raimund A1 - Niebuhr, Mario A1 - Manschwetus, Bastian A1 - Kuhlmann, Marion A1 - Mazza, Tommaso A1 - Robinson, Matthew Scott A1 - Squibb, Richard J. A1 - Trabattoni, Andrea A1 - Wallner, Måns A1 - Wolf, Thomas J. A. A1 - Gühr, Markus T1 - Core-level spectroscopy of 2-thiouracil at the sulfur L1 and L2,3 edges utilizing a SASE free-electron-laser JF - Molecules N2 - In this paper, we report X-ray absorption and core-level electron spectra of the nucleobase derivative 2-thiouracil at the sulfur L1- and L2,3-edges. We used soft X-rays from the free-electron laser FLASH2 for the excitation of isolated molecules and dispersed the outgoing electrons with a magnetic bottle spectrometer. We identified photoelectrons from the 2p core orbital, accompanied by an electron correlation satellite, as well as resonant and non-resonant Coster–Kronig and Auger–Meitner emission at the L1- and L2,3-edges, respectively. We used the electron yield to construct X-ray absorption spectra at the two edges. The experimental data obtained are put in the context of the literature currently available on sulfur core-level and 2-thiouracil spectroscopy. KW - X-ray KW - photoelectron KW - sulfur KW - thiouracil KW - nucleobases KW - Coster–Kronig KW - Auger–Meitner KW - NEXAFS KW - FLASH Y1 - 2021 SN - 1420-3049 VL - 26 IS - 21 PB - MDPI CY - Basel ER - TY - GEN A1 - Mayer, Dennis A1 - Lever, Fabiano A1 - Picconi, David A1 - Metje, Jan A1 - Ališauskas, Skirmantas A1 - Calegari, Francesca A1 - Düsterer, Stefan A1 - Ehlert, Christopher A1 - Feifel, Raimund A1 - Niebuhr, Mario A1 - Manschwetus, Bastian A1 - Kuhlmann, Marion A1 - Mazza, Tommaso A1 - Robinson, Matthew Scott A1 - Squibb, Richard James A1 - Trabattoni, Andrea A1 - Wallner, Måns A1 - Saalfrank, Peter A1 - Wolf, Thomas J. A. A1 - Gühr, Markus T1 - Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220–250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1301 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577442 SN - 1866-8372 N1 - These authors contributed equally: D. Mayer, F. Lever. A Publisher Correction to this article was published on 09 March 2022. This article has been updated. IS - 1301 ER - TY - JOUR A1 - Mayer, Dennis A1 - Lever, Fabiano A1 - Picconi, David A1 - Metje, Jan A1 - Ališauskas, Skirmantas A1 - Calegari, Francesca A1 - Düsterer, Stefan A1 - Ehlert, Christopher A1 - Feifel, Raimund A1 - Niebuhr, Mario A1 - Manschwetus, Bastian A1 - Kuhlmann, Marion A1 - Mazza, Tommaso A1 - Robinson, Matthew Scott A1 - Squibb, Richard J. A1 - Trabattoni, Andrea A1 - Wallner, Måns A1 - Saalfrank, Peter A1 - Wolf, Thomas J. A. A1 - Gühr, Markus T1 - Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy JF - Nature communications N2 - Imaging the charge flow in photoexcited molecules would provide key information on photophysical and photochemical processes. Here the authors demonstrate tracking in real time after photoexcitation the change in charge density at a specific site of 2-thiouracil using time-resolved X-ray photoelectron spectroscopy. The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-021-27908-y SN - 2041-1723 N1 - Publisher correction: https://doi.org/10.1038/s41467-022-28584-2 VL - 13 IS - 1 PB - Nature Research CY - Berlin ER - TY - JOUR A1 - Mayer, Dennis A1 - Lever, Fabiano A1 - Picconi, David A1 - Metje, Jan A1 - Ališauskas, Skirmantas A1 - Calegari, Francesca A1 - Düsterer, Stefan A1 - Ehlert, Christopher A1 - Feifel, Raimund A1 - Niebuhr, Mario A1 - Manschwetus, Bastian A1 - Kuhlmann, Marion A1 - Mazza, Tommaso A1 - Robinson, Matthew Scott A1 - Squibb, Richard James A1 - Trabattoni, Andrea A1 - Wallner, Måns A1 - Saalfrank, Peter A1 - Wolf, Thomas J. A. A1 - Gühr, Markus T1 - Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy JF - Nature Communications N2 - The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220–250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-021-27908-y SN - 2041-1723 N1 - These authors contributed equally: D. Mayer, F. Lever. A Publisher Correction to this article was published on 09 March 2022. This article has been updated. VL - 13 PB - Springer Nature CY - Berlin ER -