TY - JOUR A1 - Geng, Christian A1 - Turk, Alice A1 - Scobbie, James M. A1 - Macmartin, Cedric A1 - Hoole, Philip A1 - Richmond, Korin A1 - Wrench, Alan A1 - Pouplier, Marianne A1 - Bard, Ellen Gurman A1 - Campbell, Ziggy A1 - Dickie, Catherine A1 - Dubourg, Eddie A1 - Hardcastle, William A1 - Kainada, Evia A1 - King, Simon A1 - Lickley, Robin A1 - Nakai, Satsuki A1 - Renals, Steve A1 - White, Kevin A1 - Wiegand, Ronny T1 - Recording speech articulation in dialogue - evaluating a synchronized double electromagnetic articulography setup JF - Journal of phonetics N2 - We demonstrate the workability of an experimental facility that is geared towards the acquisition of articulatory data from a variety of speech styles common in language use, by means of two synchronized electromagnetic articulography (EMA) devices. This approach synthesizes the advantages of real dialogue settings for speech research with a detailed description of the physiological reality of speech production. We describe the facility's method for acquiring synchronized audio streams of two speakers and the system that enables communication among control room technicians, experimenters and participants. Further, we demonstrate the feasibility of the approach by evaluating problems inherent to this specific setup: The first problem is the accuracy of temporal synchronization of the two EMA machines, the second is the severity of electromagnetic interference between the two machines. Our results suggest that the synchronization method used yields an accuracy of approximately 1 ms. Electromagnetic interference was derived from the complex-valued signal amplitudes. This dependent variable was analyzed as a function of the recording status - i.e. on/off - of the interfering machine's transmitters. The intermachine distance was varied between 1 m and 8.5 m. Results suggest that a distance of approximately 6.5 m is appropriate to achieve data quality comparable to that of single speaker recordings. Y1 - 2013 U6 - https://doi.org/10.1016/j.wocn.2013.07.002 SN - 0095-4470 VL - 41 IS - 6 SP - 421 EP - 431 PB - Elsevier CY - London ER - TY - JOUR A1 - Michalik-Onichimowska, Aleksandra A1 - Kern, Simon A1 - Riedel, Jens A1 - Panne, Ulrich A1 - King, Rudibert A1 - Maiwald, Michael T1 - "Click" analytics for "click" chemistry - A simple method for calibration-free evaluation of online NMR spectra JF - Journal of magnetic resonance N2 - Driven mostly by the search for chemical syntheses under biocompatible conditions, so called "click" chemistry rapidly became a growing field of research. The resulting simple one-pot reactions are so far only scarcely accompanied by an adequate optimization via comparably straightforward and robust analysis techniques possessing short set-up times. Here, we report on a fast and reliable calibration-free online NMR monitoring approach for technical mixtures. It combines a versatile fluidic system, continuous-flow measurement of H-1 spectra with a time interval of 20 s per spectrum, and a robust, fully automated algorithm to interpret the obtained data. As a proof-of-concept, the thiol-ene coupling between N-boc cysteine methyl ester and ally] alcohol was conducted in a variety of non-deuterated solvents while its time-resolved behaviour was characterized with step tracer experiments. Overlapping signals in online spectra during thiol-ene coupling could be deconvoluted with a spectral model using indirect hard modeling and were subsequently converted to either molar ratios (using a calibration free approach) or absolute concentrations (using 1-point calibration). For various solvents the kinetic constant k for pseudo-first order reaction was estimated to be 3.9 h(-1) at 25 degrees C. The obtained results were compared with direct integration of non-overlapping signals and showed good agreement with the implemented mass balance. (C) 2017 Elsevier Inc. All rights reserved. KW - NMR spectroscopy KW - Reaction monitoring KW - Automated data evaluation KW - Thiol-ene click chemistry Y1 - 2017 U6 - https://doi.org/10.1016/j.jmr.2017.02.018 SN - 1090-7807 SN - 1096-0856 VL - 277 SP - 154 EP - 161 PB - Elsevier CY - San Diego ER -