TY - JOUR A1 - Reeve, Holly A. A1 - Nicholson, Jake A1 - Altaf, Farieha A1 - Lonsdale, Thomas H. A1 - Preissler, Janina A1 - Lauterbach, Lars A1 - Lenz, Oliver A1 - Leimkühler, Silke A1 - Hollmann, Frank A1 - Paul, Caroline E. A1 - Vincent, Kylie A. T1 - A hydrogen-driven biocatalytic approach to recycling synthetic analogues of NAD(P)H JF - Chemical communications : ChemComm N2 - We demonstrate a recycling system for synthetic nicotinamide cofactor analogues using a soluble hydrogenase with turnover number of >1000 for reduction of the cofactor analogues by H-2. Coupling this system to an ene reductase, we show quantitative conversion of N-ethylmaleimide to N-ethylsuccinimide. The biocatalyst system retained >50% activity after 7 h. Y1 - 2022 U6 - https://doi.org/10.1039/d2cc02411j SN - 1359-7345 SN - 1364-548X VL - 58 IS - 75 SP - 10540 EP - 10543 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Jeltsch, Florian A1 - Bonte, Dries A1 - Pe'er, Guy A1 - Reineking, Björn A1 - Leimgruber, Peter A1 - Balkenhol, Niko A1 - Schröder-Esselbach, Boris A1 - Buchmann, Carsten M. A1 - Müller, Thomas A1 - Blaum, Niels A1 - Zurell, Damaris A1 - Böhning-Gaese, Katrin A1 - Wiegand, Thorsten A1 - Eccard, Jana A1 - Hofer, Heribert A1 - Reeg, Jette A1 - Eggers, Ute A1 - Bauer, Silke T1 - Integrating movement ecology with biodiversity research BT - exploring new avenues to address spatiotemporal biodiversity dynamics N2 - Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of ‘movement ecology’. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide ‘mobile links’ between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through ‘equalizing’ and ‘stabilizing’ mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 401 KW - mobile links KW - species coexistence KW - community dynamics KW - biodiversity conservation KW - long distance movement KW - landscape genetics KW - individual based modeling Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401177 ER - TY - JOUR A1 - Jeltsch, Florian A1 - Bonte, Dries A1 - Peer, Guy A1 - Reineking, Björn A1 - Leimgruber, Peter A1 - Balkenhol, Niko A1 - Schröder-Esselbach, Boris A1 - Buchmann, Carsten M. A1 - Müller, Thomas A1 - Blaum, Niels A1 - Zurell, Damaris A1 - Böhning-Gaese, Katrin A1 - Wiegand, Thorsten A1 - Eccard, Jana A1 - Hofer, Heribert A1 - Reeg, Jette A1 - Eggers, Ute A1 - Bauer, Silke T1 - Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics Y1 - 2013 UR - http://download.springer.com/static/pdf/827/art%253A10.1186%252F2051-3933-1- 6.pdf?auth66=1394891271_f1a4cb74d6be42ee3f8872ef2ca22c24&ext=.pdf U6 - https://doi.org/10.1186/2051-3933-1-6 ER - TY - JOUR A1 - Frenken, Thijs A1 - Alacid, Elisabet A1 - Berger, Stella A. A1 - Bourne, Elizabeth Charlotte A1 - Gerphagnon, Melanie A1 - Grossart, Hans-Peter A1 - Gsell, Alena S. A1 - Ibelings, Bas W. A1 - Kagami, Maiko A1 - Kupper, Frithjof C. A1 - Letcher, Peter M. A1 - Loyau, Adeline A1 - Miki, Takeshi A1 - Nejstgaard, Jens C. A1 - Rasconi, Serena A1 - Rene, Albert A1 - Rohrlack, Thomas A1 - Rojas-Jimenez, Keilor A1 - Schmeller, Dirk S. A1 - Scholz, Bettina A1 - Seto, Kensuke A1 - Sime-Ngando, Telesphore A1 - Sukenik, Assaf A1 - Van de Waal, Dedmer B. A1 - Van den Wyngaert, Silke A1 - Van Donk, Ellen A1 - Wolinska, Justyna A1 - Wurzbacher, Christian A1 - Agha, Ramsy T1 - Integrating chytrid fungal parasites into plankton ecology: research gaps and needs JF - Environmental microbiology N2 - Chytridiomycota, often referred to as chytrids, can be virulent parasites with the potential to inflict mass mortalities on hosts, causing e.g. changes in phytoplankton size distributions and succession, and the delay or suppression of bloom events. Molecular environmental surveys have revealed an unexpectedly large diversity of chytrids across a wide range of aquatic ecosystems worldwide. As a result, scientific interest towards fungal parasites of phytoplankton has been gaining momentum in the past few years. Yet, we still know little about the ecology of chytrids, their life cycles, phylogeny, host specificity and range. Information on the contribution of chytrids to trophic interactions, as well as co-evolutionary feedbacks of fungal parasitism on host populations is also limited. This paper synthesizes ideas stressing the multifaceted biological relevance of phytoplankton chytridiomycosis, resulting from discussions among an international team of chytrid researchers. It presents our view on the most pressing research needs for promoting the integration of chytrid fungi into aquatic ecology. Y1 - 2017 U6 - https://doi.org/10.1111/1462-2920.13827 SN - 1462-2912 SN - 1462-2920 VL - 19 SP - 3802 EP - 3822 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Ilicic, Doris A1 - Woodhouse, Jason Nicholas A1 - Karsten, Ulf A1 - Zimmermann, Jonas A1 - Wichard, Thomas A1 - Quartino, Maria Liliana A1 - Campana, Gabriela Laura A1 - Livenets, Alexandra A1 - Van den Wyngaert, Silke A1 - Grossart, Hans-Peter T1 - Antarctic Glacial Meltwater Impacts the Diversity of Fungal Parasites Associated With Benthic Diatoms in Shallow Coastal Zones T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1290 KW - Antarctica KW - aquatic fungi KW - Chytridiomycota KW - phytoplankton host KW - salinity gradient KW - Illumina amplicon sequencing KW - Carlini Station Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-572895 SN - 1866-8372 IS - 1290 ER - TY - JOUR A1 - Ilicic, Doris A1 - Woodhouse, Jason Nicholas A1 - Karsten, Ulf A1 - Zimmermann, Jonas A1 - Wichard, Thomas A1 - Quartino, Maria Liliana A1 - Campana, Gabriela Laura A1 - Livenets, Alexandra A1 - Van den Wyngaert, Silke A1 - Grossart, Hans-Peter T1 - Antarctic Glacial Meltwater Impacts the Diversity of Fungal Parasites Associated With Benthic Diatoms in Shallow Coastal Zones JF - Frontiers in microbiology N2 - Aquatic ecosystems are frequently overlooked as fungal habitats, although there is increasing evidence that their diversity and ecological importance are greater than previously considered. Aquatic fungi are critical and abundant components of nutrient cycling and food web dynamics, e.g., exerting top-down control on phytoplankton communities and forming symbioses with many marine microorganisms. However, their relevance for microphytobenthic communities is almost unexplored. In the light of global warming, polar regions face extreme changes in abiotic factors with a severe impact on biodiversity and ecosystem functioning. Therefore, this study aimed to describe, for the first time, fungal diversity in Antarctic benthic habitats along the salinity gradient and to determine the co-occurrence of fungal parasites with their algal hosts, which were dominated by benthic diatoms. Our results reveal that Ascomycota and Chytridiomycota are the most abundant fungal taxa in these habitats. We show that also in Antarctic waters, salinity has a major impact on shaping not just fungal but rather the whole eukaryotic community composition, with a diversity of aquatic fungi increasing as salinity decreases. Moreover, we determined correlations between putative fungal parasites and potential benthic diatom hosts, highlighting the need for further systematic analysis of fungal diversity along with studies on taxonomy and ecological roles of Chytridiomycota. KW - Antarctica KW - aquatic fungi KW - Chytridiomycota KW - phytoplankton host KW - salinity gradient KW - Illumina amplicon sequencing KW - Carlini Station Y1 - 2022 U6 - https://doi.org/10.3389/fmicb.2022.805694 SN - 1664-302X IS - 13 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Spilling, Kristian A1 - Schulz, Kai G. A1 - Paul, Allanah J. A1 - Boxhammer, Tim A1 - Achterberg, Eric Pieter A1 - Hornick, Thomas A1 - Lischka, Silke A1 - Stuhr, Annegret A1 - Bermudez, Rafael A1 - Czerny, Jan A1 - Crawfurd, Kate A1 - Brussaard, Corina P. D. A1 - Grossart, Hans-Peter A1 - Riebesell, Ulf T1 - Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment JF - Biogeosciences N2 - About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient (similar to 370 mu atm) to high (similar to 1200 mu atm), were set up in mesocosm bags (similar to 55m(3)). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol Cm-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by similar to 7% in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was similar to 100 mmol C m(-2) day(-1), from which 75-95% was respired, similar to 1% ended up in the TPC (including export), and 5-25% was added to the DOC pool. During phase II, the respiration loss increased to similar to 100% of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95% of GPP) in the highest CO2 treatment. Bacterial production was similar to 30% lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification. Y1 - 2016 U6 - https://doi.org/10.5194/bg-13-6081-2016 SN - 1726-4170 SN - 1726-4189 VL - 13 SP - 6081 EP - 6093 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Spilling, Kristian A1 - Schulz, Kai Georg A1 - Paul, Allanah J. A1 - Boxhammer, Tim A1 - Achterberg, Eric Pieter A1 - Hornick, Thomas A1 - Lischka, Silke A1 - Stuhr, Annegret A1 - Bermúdez, Rafael A1 - Czerny, Jan A1 - Crawfurd, Kate A1 - Brussaard, Corina P. D. A1 - Grossart, Hans-Peter A1 - Riebesell, Ulf T1 - Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient (similar to 370 mu atm) to high (similar to 1200 mu atm), were set up in mesocosm bags (similar to 55m(3)). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol Cm-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by similar to 7% in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was similar to 100 mmol C m(-2) day(-1), from which 75-95% was respired, similar to 1% ended up in the TPC (including export), and 5-25% was added to the DOC pool. During phase II, the respiration loss increased to similar to 100% of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95% of GPP) in the highest CO2 treatment. Bacterial production was similar to 30% lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 544 KW - tecdissolved organic nitrogen KW - sea plankton community KW - high CO2 ocean KW - Baltic Sea KW - elevated CO2 KW - marine viruses KW - Atlantic-ocean KW - Natural-waters KW - Flow-cytometry KW - technical note Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411835 SN - 1866-8372 IS - 544 ER -