TY - JOUR A1 - Zalden, Peter A1 - Quirin, Florian A1 - Schumacher, Mathias A1 - Siegel, Jan A1 - Wei, Shuai A1 - Koc, Azize A1 - Nicoul, Matthieu A1 - Trigo, Mariano A1 - Andreasson, Pererik A1 - Enquist, Henrik A1 - Shu, Michael J. A1 - Pardini, Tommaso A1 - Chollet, Matthieu A1 - Zhu, Diling A1 - Lemke, Henrik A1 - Ronneberger, Ider A1 - Larsson, Jörgen A1 - Lindenberg, Aaron M. A1 - Fischer, Henry E. A1 - Hau-Riege, Stefan A1 - Reis, David A. A1 - Mazzarello, Riccardo A1 - Wuttig, Matthias A1 - Sokolowski-Tinten, Klaus T1 - Femtosecond x-ray diffraction reveals a liquid-liquid phase transition in phase-change materials JF - Science N2 - In phase-change memory devices, a material is cycled between glassy and crystalline states. The highly temperature-dependent kinetics of its crystallization process enables application in memory technology, but the transition has not been resolved on an atomic scale. Using femtosecond x-ray diffraction and ab initio computer simulations, we determined the time-dependent pair-correlation function of phase-change materials throughout the melt-quenching and crystallization process. We found a liquid-liquid phase transition in the phase-change materials Ag4In3Sb67Te26 and Ge15Sb85 at 660 and 610 kelvin, respectively. The transition is predominantly caused by the onset of Peierls distortions, the amplitude of which correlates with an increase of the apparent activation energy of diffusivity. This reveals a relationship between atomic structure and kinetics, enabling a systematic optimization of the memory-switching kinetics. Y1 - 2019 U6 - https://doi.org/10.1126/science.aaw1773 SN - 0036-8075 SN - 1095-9203 VL - 364 IS - 6445 SP - 1062 EP - 1067 PB - American Assoc. for the Advancement of Science CY - Washington, DC ER - TY - JOUR A1 - Scheiner, Ricarda A1 - Abramson, Charles I. A1 - Brodschneider, Robert A1 - Crailsheim, Karl A1 - Farina, Walter M. A1 - Fuchs, Stefan A1 - Grünewald, Bernd A1 - Hahshold, Sybille A1 - Karrer, Marlene A1 - Koeniger, Gudrun A1 - Königer, Niko A1 - Menzel, Randolf A1 - Mujagic, Samir A1 - Radspieler, Gerald A1 - Schmickl, Thomas A1 - Schneider, Christof A1 - Siegel, Adam J. A1 - Szopek, Martina A1 - Thenius, Ronald T1 - Standard methods for behavioural studies of Apis mellifera JF - Journal of apicultural research N2 - In this BEEBOOK paper we present a set of established methods for quantifying honey bee behaviour. We start with general methods for preparing bees for behavioural assays. Then we introduce assays for quantifying sensory responsiveness to gustatory, visual and olfactory stimuli. Presentation of more complex behaviours like appetitive and aversive learning under controlled laboratory conditions and learning paradigms under free-flying conditions will allow the reader to investigate a large range of cognitive skills in honey bees. Honey bees are very sensitive to changing temperatures. We therefore present experiments which aim at analysing honey bee locomotion in temperature gradients. The complex flight behaviour of honey bees can be investigated under controlled conditions in the laboratory or with sophisticated technologies like harmonic radar or RFID in the field. These methods will be explained in detail in different sections. Honey bees are model organisms in behavioural biology for their complex yet plastic division of labour. To observe the daily behaviour of individual bees in a colony, classical observation hives are very useful. The setting up and use of typical observation hives will be the focus of another section. The honey bee dance language has important characteristics of a real language and has been the focus of numerous studies. We here discuss the background of the honey bee dance language and describe how it can be studied. Finally, the mating of a honey bee queen with drones is essential to survival of the entire colony. We here give detailed and structured information how the mating behaviour of drones and queens can be observed and experimentally manipulated. The ultimate goal of this chapter is to provide the reader with a comprehensive set of experimental protocols for detailed studies on all aspects of honey bee behaviour including investigation of pesticide and insecticide effects. KW - COLOSS KW - BEEBOOK KW - honey bee KW - behaviour KW - gustatory responsiveness KW - olfactory responsiveness KW - phototaxis KW - non-associative learning KW - associative learning KW - appetitive learning KW - aversive learning KW - locomotion KW - temperature sensing KW - honey bee flight KW - observation hive KW - honey bee dance KW - honey bee navigation KW - harmonic radar KW - BeeScan KW - RFID KW - honey bee mating KW - free-flying honey bees Y1 - 2013 U6 - https://doi.org/10.3896/IBRA.1.52.4.04 SN - 0021-8839 SN - 2078-6913 VL - 52 IS - 4 PB - International Bee Research Association CY - Cardiff ER - TY - JOUR A1 - Wüstneck, Rainer A1 - Siegel, Stefan A1 - Ebisch, Th. A1 - Miller, Reinhard T1 - Surface behavior of spread sodium eicosanyl sulfate monolayers: 1. p/A isotherms determined on a Langmuir film balance and on drop surfaces and Brewster angle measurements Y1 - 1998 ER - TY - JOUR A1 - Wüstneck, Rainer A1 - Siegel, Stefan A1 - Ebisch, Th. A1 - Miller, Reinhard T1 - Surface behavior of spread sodium eicosanyl sulfate monolayers: 3. Eicosanyl sulfate monolayers spread on a NaCl subphase Y1 - 1998 ER - TY - JOUR A1 - Krägel, Jürgen A1 - Miller, Reinhard A1 - Siegel, Stefan A1 - Born, Michael A1 - Schano, Karl-Heinz T1 - Grenzflächenscherrheologische Charakterisierung von fluiden Phasengrenzen Y1 - 1995 ER - TY - JOUR A1 - Krägel, Jürgen A1 - Siegel, Stefan A1 - Miller, Reinhard A1 - Born, Michael A1 - Schano, Karl-Heinz T1 - Measurement of interfacial shear rheological properties : an automated apparatus Y1 - 1994 SN - 0927-7757 ER - TY - JOUR A1 - Krägel, Jürgen A1 - Siegel, Stefan A1 - Miller, Reinhard T1 - Surface shear rheological studies of protein adsorption layers Y1 - 1994 ER -