TY - JOUR A1 - Hoffmann, Katrin A1 - Dietzel, Birgit A1 - Schulz, Burkhard A1 - Reck, Guenter A1 - Hoffmann, Angelika A1 - Orgzall, Ingo A1 - Resch-Genger, Ute A1 - Emmerling, Franziska T1 - Combined structural and fluorescence studies of methyl-substituted 2,5-diphenyl-1,3,4-oxadiazoles - Relation between electronic properties and packing motifs JF - Journal of molecular structure N2 - Prerequisite for the rational design of functional organic materials with tailor-made electronic properties is the knowledge of the structure-property relationship for the specific class of molecules under consideration. This encouraged us to systematically study the influence of the molecular structure and substitution pattern of aromatically substituted 1,3,4-oxadiazoles on the electronic properties and packing motifs of these molecules and on the interplay of these factors. For this purpose, seven diphenyl-oxadiazoles equipped with methyl substituents in the ortho- and meta-position(s) were synthesized and characterized. Absorption and fluorescence spectra in solution served here as tools to monitor substitution-induced changes in the electronic properties of the individual molecules whereas X-ray and optical measurements in the solid state provided information on the interplay of electronic and packing effects. In solution, the spectral position of the absorption maximum, the size of Stokes shift, and the fluorescence quantum yield are considerably affected by ortho-substitution in three or four ortho-positions. This results in blue shifted absorption bands, increased Stokes shifts, and reduced fluorescence quantum yields whereas the spectral position and vibrational structure of the emission bands remain more or less unaffected. In the crystalline state, however, the spectral position and shape of the emission bands display a strong dependence on the molecular structure and/or packing motifs that seem to control the amount of dye-dye-interactions. These observations reveal the limited value of commonly reported absorption and fluorescence measurements in solution for a straightforward comparison of spectroscopic results with single X-ray crystallography. This underlines the importance of solid state spectroscopic studies for a better understanding of the interplay of electronic effects and molecular order. KW - Diphenyl-oxadiazoles KW - X-ray structure KW - Packing motif KW - Optical properties KW - Fluorescence quantum yield Y1 - 2011 U6 - https://doi.org/10.1016/j.molstruc.2010.11.071 SN - 0022-2860 VL - 988 IS - 1-3 SP - 35 EP - 46 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Emmerling, Franziska A1 - Orgzall, Ingo A1 - Dietzel, Birgit A1 - Schulz, Burkhard A1 - Larrucea, Julen T1 - Ordering the amorphous - Structures in PBD LED materials JF - Journal of molecular structure N2 - The class of 2,5 disubstituted-1,3,4-oxadiazoles containing a biphenyl unit on one side is intensively used as electron transport materials to enhance the performance of organic light emitting diodes (OLEDs). In contrast to the ongoing research on these materials insights in their structure-property relationships are still incomplete. To overcome the structural tentativeness and ambiguities the crystal structures of 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole, that of the related compound 2-(4-biphenylyl)-5-phenyl-1,3,4-oxadiazole and of 2-(4-biphenylyl)-5-(2,6-dimethylphenyl)-1,3,4-oxadiazole are determined. A comparison with the results of GAUSSIAN03 calculations and similar compounds in the Cambridge Structural Database leads to a profound characterization. KW - OLED KW - PBD KW - Diphenyl-1,3,4-oxadiazole KW - Crystallization Y1 - 2012 U6 - https://doi.org/10.1016/j.molstruc.2012.04.040 SN - 0022-2860 VL - 1030 IS - 23 SP - 209 EP - 215 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Emmerling, Franziska A1 - Orgzall, Ingo A1 - Reck, Günter A1 - Schulz, Burkhard W. A1 - Stockhause, Sabine A1 - Schulz, Burkhard T1 - Structures of substituted di-aryl-1, 3,4-oxadiazole derivatives: 2,5-bis(pyridyl)- and 2,5-bis(aminophenyl)-substitution JF - Journal of molecular structure N2 - Crystal structures of four different di-aryl-1,3,4-oxadiazole compounds (aryl = 2-pyridyl-, 3-pyridyl-, 2-aminophenyl-, 3-aminophenyl-) are determined. Crystallization of di(2-pyridyl)-1,3,4-oxadiazole yielded monoclinic and triclinic polymorphs. The structures are characterized by the occurrence of pi-pi interactions. Additionally, in case of the aminophenyl compounds intra- as well as intermolecular hydrogen bonds are found that influence the packing motif as well. Since these molecules are often used as ligands in metal-organic complexes similarities and differences of the molecular conformation between the molecules in the pure crystals and that of the ligands in the complexes are discussed. (c) 2006 Elsevier B.V. All rights reserved. KW - crystal structure KW - 1,3,4-oxadiazole KW - molecular conformation KW - hydrogen bonds Y1 - 2006 U6 - https://doi.org/10.1016/j.molstruc.2006.03.076 SN - 0022-2860 VL - 800 IS - 1-3 SP - 74 EP - 84 PB - Elsevier CY - Amsterdam ER -