TY - JOUR A1 - Pena-Angulo, D. A1 - Nadal-Romero, E. A1 - Gonzalez-Hidalgo, J. C. A1 - Albaladejo, J. A1 - Andreu, V A1 - Bagarello, V A1 - Barhi, H. A1 - Batalla, R. J. A1 - Bernal, S. A1 - Bienes, R. A1 - Campo, J. A1 - Campo-Bescos, M. A. A1 - Canatario-Duarte, A. A1 - Canton, Y. A1 - Casali, J. A1 - Castillo, V A1 - Cerda, Artemi A1 - Cheggour, A. A1 - Cid, Patricio A1 - Cortesi, N. A1 - Desir, G. A1 - Diaz-Pereira, E. A1 - Espigares, T. A1 - Estrany, Joan A1 - Fernandez-Raga, M. A1 - Ferreira, Carla S. S. A1 - Ferro, Vito A1 - Gallart, Francesc A1 - Gimenez, R. A1 - Gimeno, E. A1 - Gomez, J. A. A1 - Gomez-Gutierrez, A. A1 - Gomez-Macpherson, H. A1 - Gonzalez-Pelayo, O. A1 - Hueso-Gonzalez, P. A1 - Kairis, O. A1 - Karatzas, G. P. A1 - Klotz, S. A1 - Kosmas, C. A1 - Lana-Renault, Noemi A1 - Lasanta, T. A1 - Latron, J. A1 - Lazaro, R. A1 - Le Bissonnais, Y. A1 - Le Bouteiller, C. A1 - Licciardello, F. A1 - Lopez-Tarazon, José Andrés A1 - Lucia, A. A1 - Marin, C. A1 - Marques, M. J. A1 - Martinez-Fernandez, J. A1 - Martinez-Mena, M. A1 - Martinez-Murillo, J. F. A1 - Mateos, L. A1 - Mathys, N. A1 - Merino-Martin, L. A1 - Moreno-de las Heras, M. A1 - Moustakas, N. A1 - Nicolau, J. M. A1 - Novara, A. A1 - Pampalone, V A1 - Raclot, D. A1 - Rodriguez-Blanco, M. L. A1 - Rodrigo-Comino, Jesús A1 - Romero-Diaz, A. A1 - Roose, E. A1 - Rubio, J. L. A1 - Ruiz-Sinoga, J. D. A1 - Schnabel, S. A1 - Senciales-Gonzalez, J. M. A1 - Simonneaux, V A1 - Sole-Benet, A. A1 - Taguas, E. A1 - Taboada-Castro, M. M. A1 - Taboada-Castro, M. T. A1 - Todisco, Francesca A1 - Ubeda, X. A1 - Varouchakis, E. A. A1 - Vericat, Damia A1 - Wittenberg, L. A1 - Zabaleta, A. A1 - Zorn, M. T1 - Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin JF - Journal of hydrology N2 - Soil degradation by water is a serious environmental problem worldwide, with specific climatic factors being the major causes. We investigated the relationships between synoptic atmospheric patterns (i.e. weather types, WTs) and runoff, erosion and sediment yield throughout the Mediterranean basin by analyzing a large database of natural rainfall events at 68 research sites in 9 countries. Principal Component Analysis (PCA) was used to identify spatial relationships of the different WTs including three hydro-sedimentary variables: rainfall, runoff, and sediment yield (SY, used to refer to both soil erosion measured at plot scale and sediment yield registered at catchment scale). The results indicated 4 spatial classes of rainfall and runoff: (a) northern sites dependent on North (N) and North West (NW) flows; (b) eastern sites dependent on E and NE flows; (c) southern sites dependent on S and SE flows; and, finally, (d) western sites dependent on W and SW flows. Conversely, three spatial classes are identified for SY characterized by: (a) N and NE flows in northern sites (b) E flows in eastern sites, and (c) W and SW flows in western sites. Most of the rainfall, runoff and SY occurred during a small number of daily events, and just a few WTs accounted for large percentages of the total. Our results confirm that characterization by WT improves understanding of the general conditions under which runoff and SY occur, and provides useful information for understanding the spatial variability of runoff, and SY throughout the Mediterranean basin. The approach used here could be useful to aid of the design of regional water management and soil conservation measures. KW - Synoptic weather types KW - Erosion KW - Sediment yield KW - Runoff KW - Mediterranean basin Y1 - 2019 U6 - https://doi.org/10.1016/j.jhydrol.2019.01.059 SN - 0022-1694 SN - 1879-2707 VL - 571 SP - 390 EP - 405 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - van Schaik, N. Loes M. B. A1 - Bronstert, Axel A1 - de Jong, S. M. A1 - Jetten, V. G. A1 - van Dam, J. C. A1 - Ritsema, C. J. A1 - Schnabel, Susanne T1 - Process-based modelling of a headwater catchment in a semi-arid area: the influence of macropore flow JF - Hydrological processes N2 - Subsurface stormflow is thought to occur mainly in humid environments with steep terrains. However, in semi-arid areas, preferential flow through macropores can also result in a significant contribution of subsurface stormflow to catchment runoff for varying catchment conditions. Most hydrological models neglect this important subsurface preferential flow. Here, we use the process-oriented hydrological model Hillflow-3D, which includes a macropore flow approach, to simulate rainfall-runoff in the semi-arid Parapunos catchment in Spain, where macropore flow was observed in previous research. The model was extended for this study to account for sorptivity under very dry soil conditions. The results of the model simulations with and without macropore flow are compared. Both model versions give reasonable results for average rainfall situations, although the approach with the macropore concept provides slightly better results. The model results for scenarios of extreme rainfall events (>13.3mm30min(-1)) however show large differences between the versions with and without macropores. These model results compared with measured rainfall-runoff data show that the model with the macropore concept is better. Our conclusion is that preferential flow is important in controlling surface runoff in case of specific, high intensity rainfall events. Therefore, preferential flow processes must be included in hydrological models where we know that preferential flow occurs. Hydrological process models with a less detailed process description may fit observed average events reasonably well but can result in erroneous predictions for more extreme events. Copyright (c) 2013 John Wiley & Sons, Ltd. KW - process based KW - macropore flow KW - catchment scale KW - modelling KW - semi-arid area Y1 - 2014 U6 - https://doi.org/10.1002/hyp.10086 SN - 0885-6087 SN - 1099-1085 VL - 28 IS - 24 SP - 5805 EP - 5816 PB - Wiley-Blackwell CY - Hoboken ER -