TY - JOUR A1 - Schmidt, Romy A1 - Mieulet, Delphine A1 - Hubberten, Hans-Michael A1 - Obata, Toshihiro A1 - Höfgen, Rainer A1 - Fernie, Alisdair R. A1 - Fisahn, Joachim A1 - Segundo, Blanca San A1 - Guiderdoni, Emmanuel A1 - Schippers, Jos H. M. A1 - Müller-Röber, Bernd T1 - Salt-responsive ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice JF - The plant cell N2 - Early detection of salt stress is vital for plant survival and growth. Still, the molecular processes controlling early salt stress perception and signaling are not fully understood. Here, we identified SALT-RESPONSIVE ERF1 (SERF1), a rice (Oryza sativa) transcription factor (TF) gene that shows a root-specific induction upon salt and hydrogen peroxide (H2O2) treatment. Loss of SERF1 impairs the salt-inducible expression of genes encoding members of a mitogen-activated protein kinase (MAPK) cascade and salt tolerance-mediating TFs. Furthermore, we show that SERF1-dependent genes are H2O2 responsive and demonstrate that SERF1 binds to the promoters of MAPK KINASE KINASE6 (MAP3K6), MAPK5, DEHYDRATION-RESPONSIVE ELEMENT BINDING2A (DREB2A), and ZINC FINGER PROTEIN179 (ZFP179) in vitro and in vivo. SERF1 also directly induces its own gene expression. In addition, SERF1 is a phosphorylation target of MAPK5, resulting in enhanced transcriptional activity of SERF1 toward its direct target genes. In agreement, plants deficient for SERF1 are more sensitive to salt stress compared with the wild type, while constitutive overexpression of SERF1 improves salinity tolerance. We propose that SERF1 amplifies the reactive oxygen species-activated MAPK cascade signal during the initial phase of salt stress and translates the salt-induced signal into an appropriate expressional response resulting in salt tolerance. Y1 - 2013 U6 - https://doi.org/10.1105/tpc.113.113068 SN - 1040-4651 VL - 25 IS - 6 SP - 2115 EP - 2131 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Schmidt, Romy A1 - Schippers, Jos H. M. A1 - Mieulet, Delphine A1 - Obata, Toshihiro A1 - Fernie, Alisdair R. A1 - Guiderdoni, Emmanuel A1 - Müller-Röber, Bernd T1 - Multipass, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways JF - The plant journal N2 - Growth regulation is an important aspect of plant adaptation during environmental perturbations. Here, the role of MULTIPASS (OsMPS), an R2R3-type MYB transcription factor of rice, was explored. OsMPS is induced by salt stress and expressed in vegetative and reproductive tissues. Over-expression of OsMPS reduces growth under non-stress conditions, while knockdown plants display increased biomass. OsMPS expression is induced by abscisic acid and cytokinin, but is repressed by auxin, gibberellin and brassinolide. Growth retardation caused by OsMPS over-expression is partially restored by auxin application. Expression profiling revealed that OsMPS negatively regulates the expression of EXPANSIN (EXP) and cell-wall biosynthesis as well as phytohormone signaling genes. Furthermore, the expression of OsMPS-dependent genes is regulated by auxin, cytokinin and abscisic acid. Moreover, we show that OsMPS is a direct upstream regulator of OsEXPA4, OsEXPA8, OsEXPB2, OsEXPB3, OsEXPB6 and the endoglucanase genes OsGLU5 and OsGLU14. The multiple responses of OsMPS and its target genes to various hormones suggest an integrative function of OsMPS in the cross-talk between phytohormones and the environment to regulate adaptive growth. KW - development KW - expansin KW - transcription KW - Oryza sativa KW - hormone KW - abiotic stress Y1 - 2013 U6 - https://doi.org/10.1111/tpj.12286 SN - 0960-7412 SN - 1365-313X VL - 76 IS - 2 SP - 258 EP - 273 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Rothwell, Joseph A. A1 - Murphy, Neil A1 - Aleksandrova, Krasimira A1 - Schulze, Matthias Bernd A1 - Bešević, Jelena A1 - Kliemann, Nathalie A1 - Jenab, Mazda A1 - Ferrari, Pietro A1 - Achaintre, David A1 - Gicquiau, Audrey A1 - Vozar, Béatrice A1 - Scalbert, Augustin A1 - Huybrechts, Inge A1 - Freisling, Heinz A1 - Prehn, Cornelia A1 - Adamski, Jerzy A1 - Cross, Amanda J. A1 - Pala, Valeria Maria A1 - Boutron-Ruault, Marie-Christine A1 - Dahm, Christina C. A1 - Overvad, Kim A1 - Gram, Inger Torhild A1 - Sandanger, Torkjel M. A1 - Skeie, Guri A1 - Jakszyn, Paula A1 - Tsilidis, Kostas K. A1 - Hughes, David J. A1 - van Guelpen, Bethany A1 - Bodén, Stina A1 - Sánchez, Maria-José A1 - Schmidt, Julie A. A1 - Katzke, Verena A1 - Kühn, Tilman A1 - Colorado-Yohar, Sandra A1 - Tumino, Rosario A1 - Bueno-de-Mesquita, Bas A1 - Vineis, Paolo A1 - Masala, Giovanna A1 - Panico, Salvatore A1 - Eriksen, Anne Kirstine A1 - Tjønneland, Anne A1 - Aune, Dagfinn A1 - Weiderpass, Elisabete A1 - Severi, Gianluca A1 - Chajès, Véronique A1 - Gunter, Marc J. T1 - Metabolic signatures of healthy lifestyle patterns and colorectal cancer risk in a European cohort JF - Clinical gastroenterology and hepatology N2 - BACKGROUND & AIMS: Colorectal cancer risk can be lowered by adherence to the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) guidelines. We derived metabolic signatures of adherence to these guidelines and tested their associations with colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. METHODS: Scores reflecting adherence to the WCRF/AICR recommendations (scale, 1-5) were calculated from participant data on weight maintenance, physical activity, diet, and alcohol among a discovery set of 5738 cancer-free European Prospective Investigation into Cancer and Nutrition participants with metabolomics data. Partial least-squares regression was used to derive fatty acid and endogenous metabolite signatures of the WCRF/AICR score in this group. In an independent set of 1608 colorectal cancer cases and matched controls, odds ratios (ORs) and 95% CIs were calculated for colorectal cancer risk per unit increase in WCRF/AICR score and per the corresponding change in metabolic signatures using multivariable conditional logistic regression. RESULTS: Higher WCRF/AICR scores were characterized by metabolic signatures of increased odd-chain fatty acids, serine, glycine, and specific phosphatidylcholines. Signatures were inversely associated more strongly with colorectal cancer risk (fatty acids: OR, 0.51 per unit increase; 95% CI, 0.29-0.90; endogenous metabolites: OR, 0.62 per unit change; 95% CI, 0.50-0.78) than the WCRF/AICR score (OR, 0.93 per unit change; 95% CI, 0.86-1.00) overall. Signature associations were stronger in male compared with female participants. CONCLUSIONS: Metabolite profiles reflecting adherence to WCRF/AICR guidelines and additional lifestyle or biological risk factors were associated with colorectal cancer. Measuring a specific panel of metabolites representative of a healthy or unhealthy lifestyle may identify strata of the population at higher risk of colorectal cancer. KW - colorectal neoplasm KW - risk factors KW - World Cancer Research Fund/American Institute for Cancer Research Recommendations KW - targeted metabolomics Y1 - 2020 U6 - https://doi.org/10.1016/j.cgh.2020.11.045 SN - 1542-3565 SN - 1542-7714 VL - 20 SP - E1061 EP - E1082 PB - Elsevier CY - New York, NY ER -