TY - GEN A1 - Blenau, Wolfgang A1 - Rotte, Cathleen A1 - Krach, Christian A1 - Balfanz, Sabine A1 - Baumann, Arnd A1 - Walz, Bernd T1 - Molecular characterization and localization of the first tyramine receptor of the American cockroach (Periplaneta americana) N2 - The phenolamines octopamine and tyramine control, regulate, and modulate many physiological and behavioral processes in invertebrates. Vertebrates possess only small amounts of both substances, and thus, octopamine and tyramine, together with other biogenic amines, are referred to as “trace amines.” Biogenic amines evoke cellular responses by activating G-protein-coupled receptors. We have isolated a complementary DNA (cDNA) that encodes a biogenic amine receptor from the American cockroach Periplaneta americana, viz., Peatyr1, which shares high sequence similarity to members of the invertebrate tyramine-receptor family. The PeaTYR1 receptor was stably expressed in human embryonic kidney (HEK) 293 cells, and its ligand response has been examined. Receptor activation with tyramine reduces adenylyl cyclase activity in a dose-dependent manner (EC50 350 nM). The inhibitory effect of tyramine is abolished by co-incubation with either yohimbine or chlorpromazine. Receptor expression has been investigated by reverse transcription polymerase chain reaction and immunocytochemistry. The mRNA is present in various tissues including brain, salivary glands, midgut, Malpighian tubules, and leg muscles. The effect of tyramine on salivary gland acinar cells has been investigated by intracellular recordings, which have revealed excitatory presynaptic actions of tyramine. This study marks the first comprehensive molecular, pharmacological, and functional characterization of a tyramine receptor in the cockroach. KW - Biogenic amine KW - cellular signaling KW - G-protein-coupled receptor KW - octopamine KW - salivary gland Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44335 ER - TY - GEN A1 - Troppmann, Britta A1 - Balfanz, Sabine A1 - Baumann, Arnd A1 - Blenau, Wolfgang T1 - Inverse agonist and neutral antagonist actions of synthetic compounds at an insect 5-HT1 receptor N2 - Background and purpose: 5-Hydroxytryptamine (5-HT) has been shown to control and modulate many physiological and behavioural functions in insects. In this study, we report the cloning and pharmacological properties of a 5-HT1 receptor of an insect model for neurobiology, physiology and pharmacology. Experimental approach: A cDNA encoding for the Periplaneta americana 5-HT1 receptor was amplified from brain cDNA. The receptor was stably expressed in HEK 293 cells, and the functional and pharmacological properties were determined in cAMP assays. Receptor distribution was investigated by RT-PCR and by immunocytochemistry using an affinity-purified polyclonal antiserum. Key results: The P. americana 5-HT1 receptor (Pea5-HT1) shares pronounced sequence and functional similarity with mammalian 5-HT1 receptors. Activation with 5-HT reduced adenylyl cyclase activity in a dose-dependent manner. Pea5-HT1 was expressed as a constitutively active receptor with methiothepin acting as a neutral antagonist, and WAY 100635 as an inverse agonist. Receptor mRNA was present in various tissues including brain, salivary glands and midgut. Receptor-specific antibodies showed that the native protein was expressed in a glycosylated form in membrane samples of brain and salivary glands. Conclusions and implications: This study marks the first pharmacological identification of an inverse agonist and a neutral antagonist at an insect 5-HT1 receptor. The results presented here should facilitate further analyses of 5-HT1 receptors in mediating central and peripheral effects of 5-HT in insects. KW - Biogenic amine KW - constitutive activity KW - cellular signalling KW - G-protein-coupled receptor KW - insect Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-44346 ER -