TY - JOUR A1 - Holý, Václav A1 - Darhuber, A. A1 - Stangl, Jochen A1 - Zerlauth, S. A1 - Schäffler, F. A1 - Bauer, Günther A1 - Darowski, Nora A1 - Lübbert, Daniel A1 - Pietsch, Ullrich A1 - Vavra, I. T1 - HRXRD and GID investigations of a self-organized SiGe quantum dot multilayer Y1 - 1999 ER - TY - GEN A1 - Lang, Judith A1 - Bohn, Patrick A1 - Bhat, Hilal A1 - Jastrow, Holger A1 - Walkenfort, Bernd A1 - Cansiz, Feyza A1 - Fink, Julian A1 - Bauer, Michael A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Lang, Karl S. T1 - Acid ceramidase of macrophages traps herpes simplex virus in multivesicular bodies and protects from severe disease T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Macrophages have important protective functions during infection with herpes simplex virus type 1 (HSV-1). However, molecular mechanisms that restrict viral propagation and protect from severe disease are unclear. Here we show that macrophages take up HSV-1 via endocytosis and transport the virions into multivesicular bodies (MVBs). In MVBs, acid ceramidase (aCDase) converts ceramide into sphingosine and increases the formation of sphingosine-rich intraluminal vesicles (ILVs). Once HSV-1 particles reach MVBs, sphingosine-rich ILVs bind to HSV-1 particles, which restricts fusion with the limiting endosomal membrane and prevents cellular infection. Lack of aCDase in macrophage cultures or in Asah1(-/-) mice results in replication of HSV-1 and Asah1(-/-) mice die soon after systemic or intravaginal inoculation. The treatment of macrophages with sphingosine enhancing compounds blocks HSV-1 propagation, suggesting a therapeutic potential of this pathway. In conclusion, aCDase loads ILVs with sphingosine, which prevents HSV-1 capsids from penetrating into the cytosol. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1400 KW - immunology KW - infection KW - membrane fusion KW - phagocytosis KW - sphingolipids Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515661 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Lang, Judith A1 - Bohn, Patrick A1 - Bhat, Hilal A1 - Jastrow, Holger A1 - Walkenfort, Bernd A1 - Cansiz, Feyza A1 - Fink, Julian A1 - Bauer, Michael A1 - Schumacher, Fabian A1 - Kleuser, Burkhard A1 - Lang, Karl S. T1 - Acid ceramidase of macrophages traps herpes simplex virus in multivesicular bodies and protects from severe disease JF - Nature Communications N2 - Macrophages have important protective functions during infection with herpes simplex virus type 1 (HSV-1). However, molecular mechanisms that restrict viral propagation and protect from severe disease are unclear. Here we show that macrophages take up HSV-1 via endocytosis and transport the virions into multivesicular bodies (MVBs). In MVBs, acid ceramidase (aCDase) converts ceramide into sphingosine and increases the formation of sphingosine-rich intraluminal vesicles (ILVs). Once HSV-1 particles reach MVBs, sphingosine-rich ILVs bind to HSV-1 particles, which restricts fusion with the limiting endosomal membrane and prevents cellular infection. Lack of aCDase in macrophage cultures or in Asah1(-/-) mice results in replication of HSV-1 and Asah1(-/-) mice die soon after systemic or intravaginal inoculation. The treatment of macrophages with sphingosine enhancing compounds blocks HSV-1 propagation, suggesting a therapeutic potential of this pathway. In conclusion, aCDase loads ILVs with sphingosine, which prevents HSV-1 capsids from penetrating into the cytosol. KW - immunology KW - infection KW - membrane fusion KW - phagocytosis KW - sphingolipids Y1 - 2020 U6 - https://doi.org/10.1038/s41467-020-15072-8 SN - 2041-1723 VL - 11 IS - 1 SP - 1 EP - 15 PB - Nature Publishing Group UK CY - London ER - TY - JOUR A1 - Zen, Achmad A1 - Neher, Dieter A1 - Bauer, C. A1 - Asawapirom, Udom A1 - Scherf, Ullrich A1 - Hagen, R. A1 - Kostromine, S. A1 - Mahrt, R. F. T1 - Polarization-sensitive photoconductivity in aligned polyfluorene layers Y1 - 2002 ER - TY - JOUR A1 - Bauer, C. A1 - Böhmer, Roland A1 - Moreno-Flores, S. A1 - Richert, R. A1 - Sillescu, H. A1 - Neher, Dieter T1 - Capacitive scanning dilatometry and frequency dependent thermal expansion of polymer films Y1 - 2000 ER - TY - JOUR A1 - Ratzloff, Jeffrey K. A1 - Barlow, Brad N. A1 - Kupfer, Thomas A1 - Corcoran, Kyle A. A1 - Geier, Stephan A1 - Bauer, Evan A1 - Corbett, Henry T. A1 - Howard, Ward S. A1 - Glazier, Amy A1 - Law, Nicholas M. T1 - EVR-CB-001: An Evolving, Progenitor, White Dwarf Compact Binary Discovered with the Evryscope JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present EVR-CB-001, the discovery of a compact binary with an extremely low-mass (0.21 +/- 0.05M(circle dot)) helium core white dwarf progenitor (pre-He WD) and an unseen low-mass (0.32 +/- 0.06M(circle dot)) helium white dwarf (He WD) companion. He WDs are thought to evolve from the remnant helium-rich core of a main-sequence star stripped during the giant phase by a close companion. Low-mass He WDs are exotic objects (only about 0.2% of WDs are thought to be less than 0.3 M-circle dot), and are expected to be found in compact binaries. Pre-He WDs are even rarer, and occupy the intermediate phase after the core is stripped, but before the star becomes a fully degenerate WD and with a larger radius (approximate to 0.2R(circle dot)) than a typical WD. The primary component of EVR-CB-001 (the pre-He WD) was originally thought to be a hot subdwarf (sdB) star from its blue color and under-luminous magnitude, characteristic of sdBs. The mass, temperature (T-eff = 18,500 +/- 500 K), and surface gravity (log(g) = 4.96 +/- 0.04) solutions from this work are lower than values for typical hot subdwarfs. The primary is likely to be a post-red-giant branch, pre-He WD contracting into a He WD, and at a stage that places it nearest to sdBs on color-magnitude and T-eff-log(g) diagrams. EVR-CB-001 is expected to evolve into a fully double degenerate, compact system that should spin down and potentially evolve into a single hot subdwarf star. Single hot subdwarfs are observed, but progenitor systems have been elusive. Y1 - 2019 U6 - https://doi.org/10.3847/1538-4357/ab3727 SN - 0004-637X SN - 1538-4357 VL - 883 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER -