TY - JOUR A1 - Tu, Rui A1 - Ge, Maorong A1 - Wang, Rongjiang A1 - Walter, Thomas R. T1 - A new algorithm for tight integration of real-time GPS and strong-motion records, demonstrated on simulated, experimental, and real seismic data JF - Journal of seismology N2 - The complementary advantages of GPS and seismic measurements are well recognized in seismotectonic monitoring studies. Therefore, integrated processing of the two data streams has been proposed recently in an attempt to obtain accurate and reliable information of surface displacements associated with earthquakes. A hitherto still critical issue in the integrated processing is real-time detection and precise estimation of the transient baseline error in the seismic records. Here, we report on a new approach by introducing the seismic acceleration corrected by baseline errors into the state equation system. The correction is performed and regularly updated in short epochs (with increments which may be as short as seconds), so that station position, velocity, and acceleration can be constrained very tightly and baseline error can be estimated as a random-walk process. With the adapted state equation system, our study highlights the use of a new approach developed for integrated processing of GPS and seismic data by means of sequential least-squares adjustment. The efficiency of our approach is demonstrated and validated using simulated, experimental, and real datasets. The latter were collected at collocated GPS and seismic stations around the 4 April 2010, E1 Mayor-Cucapah earthquake (Mw, 7.2). The results have shown that baseline errors of the strong-motion sensors are corrected precisely and high-precision seismic displacements are real-timely obtained by the new approach. KW - High-rateGPS KW - Strong-motion records KW - Baseline error KW - Tight integration KW - Precise point positioning Y1 - 2014 U6 - https://doi.org/10.1007/s10950-013-9408-x SN - 1383-4649 SN - 1573-157X VL - 18 IS - 1 SP - 151 EP - 161 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Tu, Rui A1 - Chen, Kejie T1 - Tightly integrated processing of high-rate GPS and accelerometer observations by real-time estimation of transient baseline shifts JF - The journal of navigation N2 - The complementary advantages of high-rate Global Positioning System (GPS) and accelerometer observations for measuring seismic ground motion have been recognised in previous research. Here we propose an approach of tight integration of GPS and accelerometer measurements. The baseline shifts of the accelerometer are introduced as unknown parameters and estimated by a random walk process in the Precise Point Positioning (PPP) solution. To demonstrate the performance of the new strategy, we carried out several experiments using collocated GPS and accelerometer. The experimental results show that the baseline shifts of the accelerometer are automatically corrected, and high precision coseismic information of strong ground motion can be obtained in real-time. Additionally, the convergence and precision of the PPP is improved by the combined solution. KW - High-rate GPS KW - Accelerometer records KW - Baseline shift KW - Tight integration KW - Precise Point Positioning Y1 - 2014 U6 - https://doi.org/10.1017/S0373463314000150 SN - 0373-4633 SN - 1469-7785 VL - 67 IS - 5 SP - 869 EP - 880 PB - Cambridge Univ. Press CY - New York ER -