TY - JOUR A1 - Xu, QingHai A1 - Cao, Xianyong A1 - Tian, Fang A1 - Zhang, ShengRui A1 - Li, YueCong A1 - Li, ManYue A1 - Li, Jie A1 - Liu, YaoLiang A1 - Liang, Jian T1 - Relative pollen productivities of typical steppe species in northern China and their potential in past vegetation reconstruction JF - Science China N2 - The Relative Pollen Productivities (RPPs) of common steppe species are estimated using Extended R-value (ERV) model based on pollen analysis and vegetation survey of 30 surface soil samples from typical steppe area of northern China. Artemisia, Chenopodiaceae, Poaceae, Cyperaceae, and Asteraceae are the dominant pollen types in pollen assemblages, reflecting the typical steppe communities well. The five dominant pollen types and six common types (Thalictrum, Iridaceae, Potentilla, Ephedra, Brassicaceae, and Ulmus) have strong wind transport abilities; the estimated Relevant Source Area of Pollen (RSAP) is ca. 1000 m when the sediment basin radius is set at 0.5 m. Ulmus, Artemisia, Brassicaceae, Chenopodiaceae, and Thalictrum have relative high RPPs; Poaceae, Cyperaceae, Potentilla, and Ephedra pollen have moderate RPPs; Asteraceae and Iridaceae have low RPPs. The reliability test of RPPs revealed that most of the RPPs are reliable in past vegetation reconstruction. However, the RPPs of Asteraceae and Iridaceae are obviously underestimated, and those of Poaceae, Chenopodiaceae, and Ephedra are either slightly underestimated or slightly overestimated, suggesting that those RPPs should be considered with caution. These RPPs were applied to estimating plant abundances for two fossil pollen spectra (from the Lake Bayanchagan and Lake Haoluku) covering the Holocene in typical steppe area, using the "Regional Estimates of Vegetation Abundance from Large Sites" (REVEALS) model. The RPPs-based vegetation reconstruction revealed that meadow-steppe dominated by Poaceae, Cyperaceae, and Artemisia plants flourished in this area before 6500-5600 cal yr BP, and then was replaced by present typical steppe. KW - typical steppe KW - modern surface pollen KW - relative pollen productivity KW - relevant pollen source area KW - paleovegetation Y1 - 2014 U6 - https://doi.org/10.1007/s11430-013-4738-7 SN - 1674-7313 SN - 1869-1897 VL - 57 IS - 6 SP - 1254 EP - 1266 PB - Science China Press CY - Beijing ER - TY - JOUR A1 - Tu, Rui A1 - Wang, L. A1 - Liu, Z. T1 - Real time monitoring ground motion using GPS with real time corrections JF - Survey Review N2 - The high rate GPS velocity determination technology which is based on the broadcast ephemeris and epoch differenced model can retrieve displacement of ground motion with the precision of a few centimetres to decimetres in real time. Moreover, the precision of the recovered displacement can be improved if the un-modelled errors such as broadcast ephemeris residuals, atmospheric residuals, multipath effects and high frequency noise are tackled more accurately. In this paper, we propose a method to improve the precision of the recovered displacement by appropriately making use of reference station corrections. For the reference stations, the coordinates are highly constrained to extract the error corrections that are to be broadcast via a communication link to the rover. After correcting the rover’s observations, some errors such as ephemeris residuals and atmospheric residuals are effectively eliminated or at least reduced. This improves the accuracy of the observations and thus enhances the reliability of the velocity estimation. The displacement can be recovered by integrating the estimated velocity after de-trending using a linear trend that is caused by the un-corrected residuals. The series of validation results in the experiment have shown that the displacement of the simulated motion can be real time recovered with a precision of 1–2 cm, and is thus applicable for real time monitoring of the ground motion. KW - Real time KW - High rate GPS KW - Strong motion KW - Reference station KW - Rover station Y1 - 2016 U6 - https://doi.org/10.1179/1752270614Y.0000000141 SN - 0039-6265 SN - 1752-2706 VL - 48 SP - 79 EP - 85 PB - Wiley CY - Abingdon ER - TY - JOUR A1 - Li, Yuanqing A1 - Chen, Li A1 - Nofal, Issam A1 - Chen, Mo A1 - Wang, Haibin A1 - Liu, Rui A1 - Chen, Qingyu A1 - Krstić, Miloš A1 - Shi, Shuting A1 - Guo, Gang A1 - Baeg, Sang H. A1 - Wen, Shi-Jie A1 - Wong, Richard T1 - Modeling and analysis of single-event transient sensitivity of a 65 nm clock tree JF - Microelectronics reliability N2 - The soft error rate (SER) due to heavy-ion irradiation of a clock tree is investigated in this paper. A method for clock tree SER prediction is developed, which employs a dedicated soft error analysis tool to characterize the single-event transient (SET) sensitivities of clock inverters and other commercial tools to calculate the SER through fault-injection simulations. A test circuit including a flip-flop chain and clock tree in a 65 nm CMOS technology is developed through the automatic ASIC design flow. This circuit is analyzed with the developed method to calculate its clock tree SER. In addition, this circuit is implemented in a 65 nm test chip and irradiated by heavy ions to measure its SER resulting from the SETs in the clock tree. The experimental and calculation results of this case study present good correlation, which verifies the effectiveness of the developed method. KW - Clock tree KW - Modeling KW - Single-event transient (SET) Y1 - 2018 U6 - https://doi.org/10.1016/j.microrel.2018.05.016 SN - 0026-2714 VL - 87 SP - 24 EP - 32 PB - Elsevier CY - Oxford ER -