TY - JOUR A1 - Kumar, Rohini A1 - Hesse, Fabienne A1 - Rao, P. Srinivasa A1 - Musolff, Andreas A1 - Jawitz, James A1 - Sarrazin, Francois A1 - Samaniego, Luis A1 - Fleckenstein, Jan H. A1 - Rakovec, Oldrich A1 - Thober, S. A1 - Attinger, Sabine T1 - Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe JF - Nature Communications N2 - Subsurface contamination due to excessive nutrient surpluses is a persistent and widespread problem in agricultural areas across Europe. The vulnerability of a particular location to pollution from reactive solutes, such as nitrate, is determined by the interplay between hydrologic transport and biogeochemical transformations. Current studies on the controls of subsurface vulnerability do not consider the transient behaviour of transport dynamics in the root zone. Here, using state-of-the-art hydrologic simulations driven by observed hydroclimatic forcing, we demonstrate the strong spatiotemporal heterogeneity of hydrologic transport dynamics and reveal that these dynamics are primarily controlled by the hydroclimatic gradient of the aridity index across Europe. Contrasting the space-time dynamics of transport times with reactive timescales of denitrification in soil indicate that similar to 75% of the cultivated areas across Europe are potentially vulnerable to nitrate leaching for at least onethird of the year. We find that neglecting the transient nature of transport and reaction timescale results in a great underestimation of the extent of vulnerable regions by almost 50%. Therefore, future vulnerability and risk assessment studies must account for the transient behaviour of transport and biogeochemical transformation processes. KW - travel time distributions KW - groundwater vulnerability KW - flux tracking KW - transit-time KW - water age KW - nitrogen KW - model KW - dynamics KW - pollution KW - patterns Y1 - 2020 U6 - https://doi.org/10.1038/s41467-020-19955-8 SN - 2041-1723 VL - 11 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group UK CY - London ER - TY - GEN A1 - Kumar, Rohini A1 - Hesse, Fabienne A1 - Rao, P. Srinivasa A1 - Musolff, Andreas A1 - Jawitz, James A1 - Sarrazin, Francois A1 - Samaniego, Luis A1 - Fleckenstein, Jan H. A1 - Rakovec, Oldrich A1 - Thober, S. A1 - Attinger, Sabine T1 - Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Subsurface contamination due to excessive nutrient surpluses is a persistent and widespread problem in agricultural areas across Europe. The vulnerability of a particular location to pollution from reactive solutes, such as nitrate, is determined by the interplay between hydrologic transport and biogeochemical transformations. Current studies on the controls of subsurface vulnerability do not consider the transient behaviour of transport dynamics in the root zone. Here, using state-of-the-art hydrologic simulations driven by observed hydroclimatic forcing, we demonstrate the strong spatiotemporal heterogeneity of hydrologic transport dynamics and reveal that these dynamics are primarily controlled by the hydroclimatic gradient of the aridity index across Europe. Contrasting the space-time dynamics of transport times with reactive timescales of denitrification in soil indicate that similar to 75% of the cultivated areas across Europe are potentially vulnerable to nitrate leaching for at least onethird of the year. We find that neglecting the transient nature of transport and reaction timescale results in a great underestimation of the extent of vulnerable regions by almost 50%. Therefore, future vulnerability and risk assessment studies must account for the transient behaviour of transport and biogeochemical transformation processes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1352 KW - travel time distributions KW - groundwater vulnerability KW - flux tracking KW - transit-time KW - water age KW - nitrogen KW - model KW - dynamics KW - pollution KW - patterns Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549875 SN - 1866-8372 IS - 1 ER - TY - GEN A1 - Schmidt, Lennart A1 - Heße, Falk A1 - Attinger, Sabine A1 - Kumar, Rohini T1 - Challenges in applying machine learning models for hydrological inference: a case study for flooding events across Germany T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Machine learning (ML) algorithms are being increasingly used in Earth and Environmental modeling studies owing to the ever-increasing availability of diverse data sets and computational resources as well as advancement in ML algorithms. Despite advances in their predictive accuracy, the usefulness of ML algorithms for inference remains elusive. In this study, we employ two popular ML algorithms, artificial neural networks and random forest, to analyze a large data set of flood events across Germany with the goals to analyze their predictive accuracy and their usability to provide insights to hydrologic system functioning. The results of the ML algorithms are contrasted against a parametric approach based on multiple linear regression. For analysis, we employ a model-agnostic framework named Permuted Feature Importance to derive the influence of models' predictors. This allows us to compare the results of different algorithms for the first time in the context of hydrology. Our main findings are that (1) the ML models achieve higher prediction accuracy than linear regression, (2) the results reflect basic hydrological principles, but (3) further inference is hindered by the heterogeneity of results across algorithms. Thus, we conclude that the problem of equifinality as known from classical hydrological modeling also exists for ML and severely hampers its potential for inference. To account for the observed problems, we propose that when employing ML for inference, this should be made by using multiple algorithms and multiple methods, of which the latter should be embedded in a cross-validation routine. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1193 KW - machine learning KW - inference KW - floods Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523843 SN - 1866-8372 IS - 5 ER - TY - JOUR A1 - Schmidt, Lennart A1 - Heße, Falk A1 - Attinger, Sabine A1 - Kumar, Rohini T1 - Challenges in applying machine learning models for hydrological inference: a case study for flooding events across Germany JF - Water Resources Research N2 - Machine learning (ML) algorithms are being increasingly used in Earth and Environmental modeling studies owing to the ever-increasing availability of diverse data sets and computational resources as well as advancement in ML algorithms. Despite advances in their predictive accuracy, the usefulness of ML algorithms for inference remains elusive. In this study, we employ two popular ML algorithms, artificial neural networks and random forest, to analyze a large data set of flood events across Germany with the goals to analyze their predictive accuracy and their usability to provide insights to hydrologic system functioning. The results of the ML algorithms are contrasted against a parametric approach based on multiple linear regression. For analysis, we employ a model-agnostic framework named Permuted Feature Importance to derive the influence of models' predictors. This allows us to compare the results of different algorithms for the first time in the context of hydrology. Our main findings are that (1) the ML models achieve higher prediction accuracy than linear regression, (2) the results reflect basic hydrological principles, but (3) further inference is hindered by the heterogeneity of results across algorithms. Thus, we conclude that the problem of equifinality as known from classical hydrological modeling also exists for ML and severely hampers its potential for inference. To account for the observed problems, we propose that when employing ML for inference, this should be made by using multiple algorithms and multiple methods, of which the latter should be embedded in a cross-validation routine. KW - machine learning KW - inference KW - floods Y1 - 2019 VL - 56 IS - 5 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - JOUR A1 - Schmidt, Lennart A1 - Hesse, Falk A1 - Attinger, Sabine A1 - Kumar, Rohini T1 - Challenges in applying machine learning models for hydrological inference BT - a case study for flooding events across Germany JF - Water resources research N2 - Machine learning (ML) algorithms are being increasingly used in Earth and Environmental modeling studies owing to the ever-increasing availability of diverse data sets and computational resources as well as advancement in ML algorithms. Despite advances in their predictive accuracy, the usefulness of ML algorithms for inference remains elusive. In this study, we employ two popular ML algorithms, artificial neural networks and random forest, to analyze a large data set of flood events across Germany with the goals to analyze their predictive accuracy and their usability to provide insights to hydrologic system functioning. The results of the ML algorithms are contrasted against a parametric approach based on multiple linear regression. For analysis, we employ a model-agnostic framework named Permuted Feature Importance to derive the influence of models' predictors. This allows us to compare the results of different algorithms for the first time in the context of hydrology. Our main findings are that (1) the ML models achieve higher prediction accuracy than linear regression, (2) the results reflect basic hydrological principles, but (3) further inference is hindered by the heterogeneity of results across algorithms. Thus, we conclude that the problem of equifinality as known from classical hydrological modeling also exists for ML and severely hampers its potential for inference. To account for the observed problems, we propose that when employing ML for inference, this should be made by using multiple algorithms and multiple methods, of which the latter should be embedded in a cross-validation routine. KW - machine learning KW - inference KW - floods Y1 - 2020 U6 - https://doi.org/10.1029/2019WR025924 SN - 0043-1397 SN - 1944-7973 VL - 56 IS - 5 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Jing, Miao A1 - Kumar, Rohini A1 - Heße, Falk A1 - Thober, Stephan A1 - Rakovec, Oldrich A1 - Samaniego, Luis A1 - Attinger, Sabine T1 - Assessing the response of groundwater quantity and travel time distribution to 1.5, 2, and 3 °C global warming in a mesoscale central German basin T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Groundwater is the biggest single source of high-quality freshwater worldwide, which is also continuously threatened by the changing climate. In this paper, we investigate the response of the regional groundwater system to climate change under three global warming levels (1.5, 2, and 3 ∘C) in a central German basin (Nägelstedt). This investigation is conducted by deploying an integrated modeling workflow that consists of a mesoscale hydrologic model (mHM) and a fully distributed groundwater model, OpenGeoSys (OGS). mHM is forced with climate simulations of five general circulation models under three representative concentration pathways. The diffuse recharges estimated by mHM are used as boundary forcings to the OGS groundwater model to compute changes in groundwater levels and travel time distributions. Simulation results indicate that groundwater recharges and levels are expected to increase slightly under future climate scenarios. Meanwhile, the mean travel time is expected to decrease compared to the historical average. However, the ensemble simulations do not all agree on the sign of relative change. Changes in mean travel time exhibit a larger variability than those in groundwater levels. The ensemble simulations do not show a systematic relationship between the projected change (in both groundwater levels and travel times) and the warming level, but they indicate an increased variability in projected changes with adjusting the enhanced warming level from 1.5 to 3 ∘C. Correspondingly, it is highly recommended to restrain the trend of global warming. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1402 KW - climate change impacts KW - hydrological models KW - coupled surface KW - water fluxes KW - catchment KW - recharge KW - dynamics KW - aquifer KW - flow KW - parameterization Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-509343 SN - 1866-8372 IS - 3 ER - TY - JOUR A1 - Jing, Miao A1 - Kumar, Rohini A1 - Heße, Falk A1 - Thober, Stephan A1 - Rakovec, Oldrich A1 - Samaniego, Luis A1 - Attinger, Sabine T1 - Assessing the response of groundwater quantity and travel time distribution to 1.5, 2, and 3 °C global warming in a mesoscale central German basin JF - Hydrology and Earth System Sciences N2 - Groundwater is the biggest single source of high-quality freshwater worldwide, which is also continuously threatened by the changing climate. In this paper, we investigate the response of the regional groundwater system to climate change under three global warming levels (1.5, 2, and 3 ∘C) in a central German basin (Nägelstedt). This investigation is conducted by deploying an integrated modeling workflow that consists of a mesoscale hydrologic model (mHM) and a fully distributed groundwater model, OpenGeoSys (OGS). mHM is forced with climate simulations of five general circulation models under three representative concentration pathways. The diffuse recharges estimated by mHM are used as boundary forcings to the OGS groundwater model to compute changes in groundwater levels and travel time distributions. Simulation results indicate that groundwater recharges and levels are expected to increase slightly under future climate scenarios. Meanwhile, the mean travel time is expected to decrease compared to the historical average. However, the ensemble simulations do not all agree on the sign of relative change. Changes in mean travel time exhibit a larger variability than those in groundwater levels. The ensemble simulations do not show a systematic relationship between the projected change (in both groundwater levels and travel times) and the warming level, but they indicate an increased variability in projected changes with adjusting the enhanced warming level from 1.5 to 3 ∘C. Correspondingly, it is highly recommended to restrain the trend of global warming. KW - climate change impacts KW - hydrological models KW - coupled surface KW - water fluxes KW - catchment KW - recharge KW - dynamics KW - aquifer KW - flow KW - parameterization Y1 - 2020 U6 - https://doi.org/10.5194/hess-24-1511-2020 SN - 1607-7938 SN - 1027-5606 VL - 24 IS - 3 SP - 1511 EP - 1526 PB - Copernicus Publ. CY - Göttingen ER -