TY - JOUR A1 - Wan, Xin A1 - Xiong, Chao A1 - Rodriguez-Zuluaga, Juan A1 - Kervalishvili, Guram N. A1 - Stolle, Claudia A1 - Wang, Hui T1 - Climatology of the Occurrence Rate and Amplitudes of Local Time Distinguished Equatorial Plasma Depletions Observed by Swarm Satellite JF - Journal of geophysical research : Space physics N2 - In this study, we developed an autodetection technique for the equatorial plasma depletions (EPDs) and their occurrence and depletion amplitudes based on in situ electron density measurements gathered by Swarm A satellite. For the first time, comparisons are made among the detected EPDs and their amplitudes with the loss of Global Positioning System (GPS) signal of receivers onboard Swarm A, and the Swarm Level-2 product, Ionospheric Bubble Index (IBI). It has been found that the highest rate of EPD occurrence takes place generally between 2200 and 0000 magnetic local time (MLT), in agreement with the IBI. However, the largest amplitudes of EPD are detected earlier at about 1900-2100 MLT. This coincides with the moment of higher background electron density and the largest occurrence of GPS signal loss. From a longitudinal perspective, the higher depletion amplitude is always witnessed in spatial bins with higher background electron density. At most longitudes, the occurrence rate of postmidnight EPDs is reduced compared to premidnight ones; while more postmidnight EPDs are observed at African longitudes. CHAMP observations confirm this point regardless of high or low solar activity condition. Further by comparing with previous studies and the plasma vertical drift velocity from ROCSAT-1, we suggest that while the F region vertical plasma drift plays a key role in dominating the occurrence of EPDs during premidnight hours, the postmidnight EPDs are the combined results from the continuing of former EPDs and newborn EPDs, especially during June solstice. And these newborn EPDs during postmidnight hours seem to be less related to the plasma vertical drift. KW - equatorial plasma depletion KW - swarm LP KW - depletion amplitude KW - climatology KW - postmidnight Y1 - 2018 U6 - https://doi.org/10.1002/2017JA025072 SN - 2169-9380 SN - 2169-9402 VL - 123 IS - 4 SP - 3014 EP - 3026 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Rodriguez-Zuluaga, Juan A1 - Stolle, Claudia A1 - Yamazaki, Yosuke A1 - Lühr, H. A1 - Park, J. A1 - Scherliess, L. A1 - Chau, J. L. T1 - On the balance between plasma and magnetic pressure across equatorial plasma depletions JF - Journal of geophysical research : Space physics N2 - In magnetized plasmas such as the ionosphere, electric currents develop in regions of strong density gradients to balance the resulting plasma pressure gradients. These currents, usually known as diamagnetic currents decrease the magnetic pressure where the plasma pressure increases, and vice versa. In the low‐latitude ionosphere, equatorial plasma depletions (EPDs) are well known for their steep plasma density gradients and adverse effect on radio wave propagation. In this paper, we use continuous measurements of the magnetic field and electron density from the European Space Agency's Swarm constellation mission to assess the balance between plasma and magnetic pressure across large‐scale EPDs. The analysis is based on the magnetic fluctuations related to diamagnetic currents flowing at the edges of EPDs. This study shows that most of the EPDs detected by Swarm present a decrease of the plasma pressure relative to the ambient plasma. However, EPDs with high plasma pressure are also identified mainly in the vicinity of the South Atlantic magnetic anomaly. From the electron density measurements, we deduce that such an increase in plasma pressure within EPDs might be possible by temperatures inside the EPD as high as twice the temperature of the ambient plasma. Due to the distinct location of the high‐pressure EPDs, we suggest that a possible heating mechanism might be due to precipitation of particle from the radiation belts. This finding corresponds to the first observational evidence of plasma pressure enhancements in regions of depleted plasma density in the ionosphere. KW - equatorial plasma depletions KW - spread F KW - plasma pressure KW - magnetic pressure KW - diamagnetic currents Y1 - 2019 U6 - https://doi.org/10.1029/2019JA026700 SN - 2169-9402 VL - 124 IS - 7 SP - 5936 EP - 5944 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Rodriguez-Zuluaga, Juan A1 - Stolle, Claudia T1 - Interhemispheric field-aligned currents at the edges of equatorial plasma depletions JF - Scientific reports N2 - A comprehensive description of electromagnetic processes related to equatorial plasma depletions (EPDs) is essential for understanding their evolution and day-to-day variability. Recently, field-aligned currents (FACs) flowing at both western and eastern edges of EPDs were observed to be interhemispheric rather than anti-parallel about the dip equator, as suggested by previous theoretical studies. In this paper, we investigate the spatial and temporal variability of the FACs orientation using simultaneous measurements of electron density and magnetic field gathered by ESA’s Swarm constellation mission. By using empirical models, we assess the role of the Pedersen conductance in the preference of the FACs to close either in the northern or southern magnetic hemisphere. Here we show that the closure of the FACs agrees with an electrostatic regime determined by a hemispherical asymmetry of the Pedersen conductance. That is, the EPD-related FACs close at lower altitudes in the hemisphere with the highest conductivity. The evidence of this conclusion stands on the general agreement between the longitudinal and seasonal variability of both the conductivity and the FACs orientation. Y1 - 2019 U6 - https://doi.org/10.1038/s41598-018-37955-z SN - 2045-2322 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Park, Jaeheung A1 - Lühr, Hermann A1 - Stolle, Claudia A1 - Rodriguez-Zuluaga, Juan A1 - Knudsen, David J. A1 - Burchill, Johnathan K. A1 - Kwak, Young-Sil T1 - Statistical survey of nighttime midlatitude magnetic fluctuations: Their source location and Poynting flux as derived from the Swarm constellation JF - Journal of geophysical research : Space physics N2 - This is the first statistical survey of field fluctuations related with medium-scale traveling ionospheric disturbances (MSTIDs), which considers magnetic field, electric field, and plasma density variations at the same time. Midlatitude electric fluctuations (MEFs) and midlatitude magnetic fluctuations (MMFs) observed in the nighttime topside ionosphere have generally been attributed to MSTIDs. Although the topic has been studied for several decades, statistical studies of the Poynting flux related with MEF/MMF/MSTID have not yet been conducted. In this study we make use of electric/magnetic field and plasma density observations by the European Space Agency's Swarm constellation to address the statistical behavior of the Poynting flux. We have found that (1) the Poynting flux is directed mainly from the summer to winter hemisphere, (2) its magnitude is larger before midnight than thereafter, and (3) the magnitude is not well correlated with fluctuation level of in situ plasma density. These results are discussed in the context of previous studies. Y1 - 2016 U6 - https://doi.org/10.1002/2016JA023408 SN - 2169-9380 SN - 2169-9402 VL - 121 SP - 11235 EP - 11248 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Rodriguez-Zuluaga, Juan A1 - Stolle, Claudia A1 - Park, J. T1 - On the direction of the Poynting flux associated with equatorial plasma depletions as derived from Swarm JF - Geophysical research letters N2 - Magnetic and electric field observations from the European Space Agency Swarm mission are used to report the direction of electromagnetic energy flux associated with equatorial plasma depletions. Contrary to expectations, the observations suggest a general interhemispheric Poynting flux rather than concurrent flows at both hemispheres toward or away from the equator. Of high interest is a particular behavior noticed over the region with the largest variation in the magnetic declination. This is a Poynting flux flowing mainly into the southern magnetic hemisphere about between 60 degrees W and 30 degrees E and into the northern magnetic hemisphere between 110 degrees W and 60 degrees W. The abrupt change in the flow direction at 60 degrees W is suggested to be caused by an asymmetry between the hemispheres on the ionospheric conductivity, likely due to the influence of thermospheric winds and the presence of the South Atlantic Anomaly. Y1 - 2017 U6 - https://doi.org/10.1002/2017GL073385 SN - 0094-8276 SN - 1944-8007 VL - 44 SP - 5884 EP - 5891 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Rodríguez Zuluaga, Juan A1 - Stolle, Claudia A1 - Yamazaki, Yosuke A1 - Xiong, Chao A1 - England, Scott L. T1 - A synoptic-scale wavelike structure in the nighttime equatorial ionization anomaly JF - Earth and Space Science : ESS N2 - Both ground- and satellite-based airglow imaging have significantly contributed to understanding the low-latitude ionosphere, especially the morphology and dynamics of the equatorial ionization anomaly (EIA). The NASA Global-scale Observations of the Limb and Disk (GOLD) mission focuses on far-ultraviolet airglow images from a geostationary orbit at 47.5 degrees W. This region is of particular interest at low magnetic latitudes because of the high magnetic declination (i.e., about -20 degrees) and proximity of the South Atlantic magnetic anomaly. In this study, we characterize an exciting feature of the nighttime EIA using GOLD observations from October 5, 2018 to June 30, 2020. It consists of a wavelike structure of a few thousand kilometers seen as poleward and equatorward displacements of the EIA-crests. Initial analyses show that the synoptic-scale structure is symmetric about the dip equator and appears nearly stationary with time over the night. In quasi-dipole coordinates, maxima poleward displacements of the EIA-crests are seen at about +/- 12 degrees latitude and around 20 and 60 degrees longitude (i.e., in geographic longitude at the dip equator, about 53 degrees W and 14 degrees W). The wavelike structure presents typical zonal wavelengths of about 6.7 x 10(3) km and 3.3 x 10(3) km. The structure's occurrence and wavelength are highly variable on a day-to-day basis with no apparent dependence on geomagnetic activity. In addition, a cluster or quasi-periodic wave train of equatorial plasma depletions (EPDs) is often detected within the synoptic-scale structure. We further outline the difference in observing these EPDs from FUV images and in situ measurements during a GOLD and Swarm mission conjunction. KW - equatorial ionization anomaly KW - equatorial ionosphere KW - equatorial plasma bubbles KW - wave structure KW - forcing from below Y1 - 2021 U6 - https://doi.org/10.1029/2020EA001529 SN - 2333-5084 VL - 8 IS - 2 PB - American Geophysical Union CY - Malden, Mass. ER - TY - THES A1 - Rodriguez Zuluaga, Juan T1 - Electric and magnetic characteristics of equatorial plasma depletions T1 - Elektrische und magnetische Beschreibung von äquatorialen Plasma-Verarmungen BT - an observational assessment using the Swarm mission BT - eine empirische Beurteilung mit der Satellitenmission Swarm N2 - Near-Earth space represents a significant scientific and technological challenge. Particularly at magnetic low-latitudes, the horizontal magnetic field geometry at the dip equator and its closed field-lines support the existence of a distinct electric current system, abrupt electric field variations and the development of plasma irregularities. Of particular interest are small-scale irregularities associated with equatorial plasma depletions (EPDs). They are responsible for the disruption of trans-ionospheric radio waves used for navigation, communication, and Earth observation. The fast increase of satellite missions makes it imperative to study the near-Earth space, especially the phenomena known to harm space technology or disrupt their signals. EPDs correspond to the large-scale structure (i.e., tens to hundreds of kilometers) of topside F region irregularities commonly known as Spread F. They are observed as depleted-plasma density channels aligned with the ambient magnetic field in the post-sunset low-latitude ionosphere. Although the climatological variability of their occurrence in terms of season, longitude, local time and solar flux is well-known, their day to day variability is not. The sparse observations from ground-based instruments like radars and the few simultaneous measurements of ionospheric parameters by space-based instruments have left gaps in the knowledge of EPDs essential to comprehend their variability. In this dissertation, I profited from the unique observations of the ESA’s Swarm constellation mission launched in November 2013 to tackle three issues that revealed novel and significant results on the current knowledge of EPDs. I used Swarm’s measurements of the electron density, magnetic, and electric fields to answer, (1.) what is the direction of propagation of the electromagnetic energy associated with EPDs?, (2.) what are the spatial and temporal characteristics of the electric currents (field-aligned and diamagnetic currents) related to EPDs, i.e., seasonal/geographical, and local time dependencies?, and (3.) under what conditions does the balance between magnetic and plasma pressure across EPDs occur? The results indicate that: (1.) The electromagnetic energy associated with EPDs presents a preference for interhemispheric flows; that is, the related Poynting flux directs from one magnetic hemisphere to the other and varies with longitude and season. (2.) The field-aligned currents at the edges of EPDs are interhemispheric. They generally close in the hemisphere with the highest Pedersen conductance. Such hemispherical preference presents a seasonal/longitudinal dependence. The diamagnetic currents increase or decrease the magnetic pressure inside EPDs. These two effects rely on variations of the plasma temperature inside the EPDs that depend on longitude and local time. (3.) EPDs present lower or higher plasma pressure than the ambient. For low-pressure EPDs the plasma pressure gradients are mostly dominated by variations of the plasma density so that variations of the temperature are negligible. High-pressure EPDs suggest significant temperature variations with magnitudes of approximately twice the ambient. Since their occurrence is more frequent in the vicinity of the South Atlantic magnetic anomaly, such high temperatures are suggested to be due to particle precipitation. In a broader context, this dissertation shows how dedicated satellite missions with high-resolution capabilities improve the specification of the low-latitude ionospheric electrodynamics and expand knowledge on EPDs which is valuable for current and future communication, navigation, and Earth-observing missions. The contributions of this investigation represent several ’firsts’ in the study of EPDs: (1.) The first observational evidence of interhemispheric electromagnetic energy flux and field-aligned currents. (2.) The first spatial and temporal characterization of EPDs based on their associated field-aligned and diamagnetic currents. (3.) The first evidence of high plasma pressure in regions of depleted plasma density in the ionosphere. These findings provide new insights that promise to advance our current knowledge of not only EPDs but the low-latitude post-sunset ionosphere environment. N2 - Der erdnahe Weltraum stellt eine bedeutende wissenschaftliche und technologische Herausforderung dar. Insbesondere in niedrigeren magnetischen Breitengraden unterstützen die horizontale Geometrie des Magnetfelds und seine geschlossenen Feldlinien das Vorhandensein eines speziellen elektrischen Stromsystems, abrupte Änderungen der elektrischen Felder und das Auftreten von Plasmairregularitäten. Von besonderem Interesse sind regionale Unregelmäßigkeiten im Zusammenhang mit äquatorialen Plasma-Verarmungen (EPDs, Abkürzung aus dem Englischen für „equatorial plasma depletions”). Sie stören trans-ionosphärischer Funkwellen, welche zur Positionierung, Kommunikation und Erd-beobachtung eingesetzt werden. Die schnelle Entwicklung von Satellitenmissionen macht das Verständnis der erdnahen Weltraumphänomene zu einer Priorität, insbesondere derjenigen, welche die Weltraumtechnologie schädigen oder ihre Signale stören können. Die EPDs und die damit verbundenen Plasmairregularitäten sind seit Beginn des Weltraumzeitalters eines der am häufigsten untersuchten Phänomene. EPDs sind großflächigen Strukturen (d. h. zehn bis hundert Kilometer), die auf Spread F Ereignisse zurückgeführt werden können. Sie äußern sich als mit dem Hintergrund-Magnetfeld ausgerichtete Kanäle verarmter Plasmadichte, welche in niedrigen Breiten in der Ionophäre nach Sonnenuntergang auftreten. Obwohl die klimatologische Variabilität des Auftretens von EPDs bezüglich der Jahreszeit, geografischen Länge, Ortszeit und des Sonnenzyklus wohl bekannt sind, trifft dies nicht für ihre Tag-zu-Tag-Variabilität zu. Die spärlichen Beobachtungen von bodengestützten Instrumenten, wie Radargeräten, und die wenigen gleichzeitigen Messungen ionosphärischer Parameter von weltraumgestützten Instrumenten auf erdnahen Umlaufbahnen haben Wissenslücken hinterlassen, die für das Verständnis der Variabilität von EPDs essentiell sind. In dieser Dissertation habe ich von einzigartigen Beobachtungen der im November 2013 gestarteten ESA Satellitenkonstellationsmission „Swarm“ profitiert, um drei Probleme zu bearbeiten, die neue und signifikante Ergebnisse zum aktuellen Wissen über EPDs enthüllten. Ich habe Swarms Messungen der Elektronendichte, des magnetischen und des elektrischen Feldes verwendet, um Folgendes zu beantworten: (1.) In welche Richtung breitet sich die mit den EPDs verbundene elektromagnetische Energie aus? (2.) Was sind die räumlichen und zeitlichen Eigenschaften der elektrischen Ströme (feldgerichtete und diamagnetische Ströme) in Bezug auf EPDs, d. h. wie hängen sie von der geografischen Länge, Jahreszeit und Lokalzeit ab? (3.) Unter welchen Bedingungen findet der mit EPDs verbundene Ausgleich zwischen magnetischem Druck und Plasmadruck statt? Die Ergebnisse zeigen, dass: (1.) Die mit EPDs verbundene elektromagnetische Energie bevorzugt interhemisphärische Strömungen, das heißt, der zugehörige Poynting-Fluss strömt von einer magnetischen Hemisphäre zur anderen und die Strömungsrichtung variiert mit geografischer Länge und Jahreszeit. (2.) Die feldgerichteten Ströme an den Rändern von EPDs sind interhemisphärisch. Im Allgemeinen schließen sie sich in der Hemisphäre mit der höchsten Pedersen-Leitfähigkeit. Die derartige hemisphärische Präferenz zeigt eine Abhängigkeit bezüglich der Jahreszeit/geografischen Länge. Die diamagnetischen Ströme erhöhen oder verringern den magnetischen Druck innerhalb der EPDs. Diese beiden Effekte beruhen auf Variationen der Plasmatemperatur innerhalb der EPDs, die von der geografischen Länge und der Lokalzeit abhängt. (3.) EPDs weisen einen höheren oder niedrigeren Plasmadruck als ihre Umgebung auf. In Niederdruck-EPDs werden die Plasmadruckgradienten meist durch Variationen der Plasmadichte hervorgerufen, sodass Temperaturschwankungen vernachlässigbar sind. Hochdruck-EPDs deuten auf hohe innere Temperaturen hin, etwa das Zweifache der Umgebungstemperatur. Aufgrund ihres häufigeren Auftretens in der Nähe der Südatlantischen Magnetfeldanomalie wird vermutet, dass solche hohen Temperaturen auf den Einfall hochenergetischer Teilchen zurückzuführen sind. In einem breiteren Kontext zeigt diese Dissertation auf, wie spezielle Satellitenmissionen mit hohem Auflösungsvermögen die Spezifikation der ionoshärischen Elektrodynamik in niedrigen Breiten und das Verständnis von EPDs verbessern, was wertvoll für aktuelle und zukünfte Kommunikatoins-, Positionierungs- sowie Erdbeobachtungsmissionen ist. Die Beiträge dieser Arbeit stellen gleich mehrere "Premieren" in der EPD-Forschung dar: (1.) Der erste empirische Nachweis interhemisphärischer elektromagnetischer Energieflüsse und feldgerichteter Ströme. (2.) Die erste raum-zeitliche Beschreibung von EPDs auf der Grundlage ihrer assoziierten feldgerichteten und diamagnetischen Ströme. (3.) Der erste Nachweis hohen Plasmadrucks in Regionen verminderter Plasmadichte in der Ionosphäre. Diese Forschungsergebnisse liefern neue Erkenntnisse, die nicht nur unser derzeitiges Wissen über EPDs, sondern auch jenes über die ionosphärische Domaine in niedrigen Breiten nach Sonnenuntergang fördert. KW - equatorial plasma depletions KW - electric and magnetic fields KW - spread F KW - ionosphere KW - swarm mission KW - äquatorialen Plasma-Verarmungen KW - elektrische und magnetische Felder KW - Spread F KW - Ionosphäre KW - Satellitenmission Swarm Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445873 ER -