TY - JOUR A1 - Casas-Marce, Mireia A1 - Marmesat, Elena A1 - Soriano, Laura A1 - Martinez-Cruz, Begona A1 - Lucena-Perez, Maria A1 - Nocete, Francisco A1 - Rodriguez-Hidalgo, Antonio A1 - Canals, Antoni A1 - Nadal, Jordi A1 - Detry, Cleia A1 - Bernaldez-Sanchez, Eloisa A1 - Fernandez-Rodriguez, Carlos A1 - Perez-Ripoll, Manuel A1 - Stiller, Mathias A1 - Hofreiter, Michael A1 - Rodriguez, Alejandro A1 - Revilla, Eloy A1 - Delibes, Miguel A1 - Godoy, Jose A. T1 - Spatiotemporal Dynamics of Genetic Variation in the Iberian Lynx along Its Path to Extinction Reconstructed with Ancient DNA JF - Molecular biology and evolution N2 - There is the tendency to assume that endangered species have been both genetically and demographically healthier in the past, so that any genetic erosion observed today was caused by their recent decline. The Iberian lynx (Lynx pardinus) suffered a dramatic and continuous decline during the 20th century, and now shows extremely low genome- and species-wide genetic diversity among other signs of genomic erosion. We analyze ancient (N = 10), historical (N = 245), and contemporary (N = 172) samples with microsatellite and mitogenome data to reconstruct the species' demography and investigate patterns of genetic variation across space and time. Iberian lynx populations transitioned from low but significantly higher genetic diversity than today and shallow geographical differentiation millennia ago, through a structured metapopulation with varying levels of diversity during the last centuries, to two extremely genetically depauperate and differentiated remnant populations by 2002. The historical subpopulations show varying extents of genetic drift in relation to their recent size and time in isolation, but these do not predict whether the populations persisted or went finally extinct. In conclusion, current genetic patterns were mainly shaped by genetic drift, supporting the current admixture of the two genetic pools and calling for a comprehensive genetic management of the ongoing conservation program. This study illustrates how a retrospective analysis of demographic and genetic patterns of endangered species can shed light onto their evolutionary history and this, in turn, can inform conservation actions. KW - Iberian lynx KW - ancient DNA KW - paleogenetics KW - genetic erosion KW - endangered species Y1 - 2017 U6 - https://doi.org/10.1093/molbev/msx222 SN - 0737-4038 SN - 1537-1719 VL - 34 SP - 2893 EP - 2907 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Botero, David A1 - Monk, Jonathan A1 - Rodriguez Cubillos, Maria Juliana A1 - Rodriguez Cubillos, Andres Eduardo A1 - Restrepo, Mariana A1 - Bernal-Galeano, Vivian A1 - Reyes, Alejandro A1 - Gonzalez Barrios, Andres A1 - Palsson, Bernhard O. A1 - Restrepo, Silvia A1 - Bernal, Adriana T1 - Genome-scale metabolic model of Xanthomonas phaseoli pv. manihotis BT - an approach to elucidate pathogenicity at the metabolic level JF - Frontiers in genetics N2 - Xanthomonas phaseoli pv. manihotis (Xpm) is the causal agent of cassava bacterial blight, the most important bacterial disease in this crop. There is a paucity of knowledge about the metabolism of Xanthomonas and its relevance in the pathogenic process, with the exception of the elucidation of the xanthan biosynthesis route. Here we report the reconstruction of the genome-scale model of Xpm metabolism and the insights it provides into plant-pathogen interactions. The model, iXpm1556, displayed 1,556 reactions, 1,527 compounds, and 890 genes. Metabolic maps of central amino acid and carbohydrate metabolism, as well as xanthan biosynthesis of Xpm, were reconstructed using Escher (https://escher.github.io/) to guide the curation process and for further analyses. The model was constrained using the RNA-seq data of a mutant of Xpm for quorum sensing (QS), and these data were used to construct context-specific models (CSMs) of the metabolism of the two strains (wild type and QS mutant). The CSMs and flux balance analysis were used to get insights into pathogenicity, xanthan biosynthesis, and QS mechanisms. Between the CSMs, 653 reactions were shared; unique reactions belong to purine, pyrimidine, and amino acid metabolism. Alternative objective functions were used to demonstrate a trade-off between xanthan biosynthesis and growth and the re-allocation of resources in the process of biosynthesis. Important features altered by QS included carbohydrate metabolism, NAD(P)(+) balance, and fatty acid elongation. In this work, we modeled the xanthan biosynthesis and the QS process and their impact on the metabolism of the bacterium. This model will be useful for researchers studying host-pathogen interactions and will provide insights into the mechanisms of infection used by this and other Xanthomonas species. KW - Xanthomonas KW - Xpm KW - cassava bacterial blight KW - genome-scale metabolic KW - model KW - quorum sensing Y1 - 2020 U6 - https://doi.org/10.3389/fgene.2020.00837 SN - 1664-8021 VL - 11 PB - Frontiers Media CY - Lausanne ER -