TY - JOUR A1 - Miranda, Rodrigo A. A1 - Rempel, Erico L. A1 - Chian, Abraham C.-L. A1 - Seehafer, Norbert A1 - Toledo, Benjamin A. T1 - Lagrangian coherent structures at the onset of hyperchaos in the two-dimensional Navier-Stokes equations Y1 - 2013 UR - http://dx.doi.org/10.1063/1.4811297 ER - TY - JOUR A1 - Miranda, Rodrigo A. A1 - Rempel, Erico L. A1 - Chian, Abraham C.-L. A1 - Seehafer, Norbert A1 - Toledo, Benjamin A. A1 - Munoz, Pablo R. T1 - Lagrangian coherent structures at the onset of hyperchaos in the two-dimensional Navier-Stokes equations JF - Chaos : an interdisciplinary journal of nonlinear science N2 - We study a transition to hyperchaos in the two-dimensional incompressible Navier-Stokes equations with periodic boundary conditions and an external forcing term. Bifurcation diagrams are constructed by varying the Reynolds number, and a transition to hyperchaos (HC) is identified. Before the onset of HC, there is coexistence of two chaotic attractors and a hyperchaotic saddle. After the transition to HC, the two chaotic attractors merge with the hyperchaotic saddle, generating random switching between chaos and hyperchaos, which is responsible for intermittent bursts in the time series of energy and enstrophy. The chaotic mixing properties of the flow are characterized by detecting Lagrangian coherent structures. After the transition to HC, the flow displays complex Lagrangian patterns and an increase in the level of Lagrangian chaoticity during the bursty periods that can be predicted statistically by the hyperchaotic saddle prior to HC transition. Y1 - 2013 U6 - https://doi.org/10.1063/1.4811297 SN - 1054-1500 VL - 23 IS - 3 PB - American Institute of Physics CY - Melville ER -