TY - JOUR A1 - Baumbach, Lukas A1 - Siegmund, Jonatan F. A1 - Mittermeier, Magdalena A1 - Donner, Reik Volker T1 - Impacts of temperature extremes on European vegetation during the growing season JF - Biogeosciences N2 - Temperature is a key factor controlling plant growth and vitality in the temperate climates of the mid-latitudes like in vast parts of the European continent. Beyond the effect of average conditions, the timings and magnitudes of temperature extremes play a particularly crucial role, which needs to be better understood in the context of projected future rises in the frequency and/or intensity of such events. In this work, we employ event coincidence analysis (ECA) to quantify the likelihood of simultaneous occurrences of extremes in daytime land surface temperature anomalies (LSTAD) and the normalized difference vegetation index (NDVI). We perform this analysis for entire Europe based upon remote sensing data, differentiating between three periods corresponding to different stages of plant development during the growing season. In addition, we analyze the typical elevation and land cover type of the regions showing significantly large event coincidences rates to identify the most severely affected vegetation types. Our results reveal distinct spatio-temporal impact patterns in terms of extraordinarily large co-occurrence rates between several combinations of temperature and NDVI extremes. Croplands are among the most frequently affected land cover types, while elevation is found to have only a minor effect on the spatial distribution of corresponding extreme weather impacts. These findings provide important insights into the vulnerability of European terrestrial ecosystems to extreme temperature events and demonstrate how event-based statistics like ECA can provide a valuable perspective on environmental nexuses. Y1 - 2017 U6 - https://doi.org/10.5194/bg-14-4891-2017 SN - 1726-4170 SN - 1726-4189 VL - 14 SP - 4891 EP - 4903 PB - Copernicus CY - Göttingen ER - TY - BOOK A1 - Donner, Reik Volker A1 - Cser, Adrienn A1 - Schwarz, Udo A1 - Otto, Andreas H. A1 - Feudel, Ulrike T1 - An approach to a process model of laser beam melt ablation using methods of linear and non-linear data analysis N2 - As a non-contact process laser beam melt ablation offers several advantages compared to conventional processing mechanisms. During ablation the surface of the workpiece is molten by the energy of a CO2-laser beam, this melt is then driven out by the impulse of an additional process gas. Although the idea behind laser beam melt ablation is rather simple, the process itself has a major limitation in practical applications: with increasing ablation rate surface quality of the workpiece processed declines rapidly. With different ablation rates different surface structures can be distinguished, which can be characterised by suitable surface parameters. The corresponding regimes of pattern formation are found in linear and non-linear statistical properties of the recorded process emissions as well. While the ablation rate can be represented in terms of the line-energy, this parameter does not provide sufficient information about the full behaviour of the system. The dynamics of the system is dominated by oscillations due to the laser cycle but includes some periodically driven non-linear processes as well. Upon the basis of the measured time series, a corresponding model is developed. The deeper understanding of the process can be used to develop strategies for a process control. Y1 - 2004 SN - 3-527-40430-9 ER - TY - BOOK A1 - Donner, Reik Volker A1 - Cser, Adrienn A1 - Schwarz, Udo A1 - Otto, Andreas H. A1 - Feudel, Ulrike T1 - An approach to a process model of laser beam melt ablation using methods of linear and non-linear data analysis N2 - As a non-contact process laser beam melt ablation offers several advantages compared to conventional processing mechanisms. During ablation the surface of the workpiece is molten by the energy of a CO2-laser beam, this melt is then driven out by the impulse of an additional process gas. Although the idea behind laser beam melt ablation is rather simple, the process itself has a major limitation in practical applications: with increasing ablation rate surface quality of the workpiece processed declines rapidly. With different ablation rates different surface structures can be distinguished, which can be characterised by suitable surface parameters. The corresponding regimes of pattern formation are found in linear and non-linear statistical properties of the recorded process emissions as well. While the ablation rate can be represented in terms of the line-energy, this parameter does not provide sufficient information about the full behaviour of the system. The dynamics of the system is dominated by oscillations due to the laser cycle but includes some periodically driven non-linear processes as well. Upon the basis of the measured time series, a corresponding model is developed. The deeper understanding of the process can be used to develop strategies for a process control. Y1 - 2003 SN - 3-928921-88-6 ER - TY - JOUR A1 - Cser, Adrienn A1 - Donner, Reik Volker A1 - Schwarz, Udo A1 - Otto, Andreas H. A1 - Geiger, M. A1 - Feudel, Ulrike T1 - Towards a better understanding of laser beam melt ablation using methods of statistical analysis N2 - Laser beam melt ablation, as a contact free machining process, offers several advantages compared to conventional processing mechanisms. Although the idea behind it is rather simple, the process has a major limitation: with increasing ablation rate surface quality of the workpiece processed declines rapidly. The structures observed show a clear dependence of the line energy. In dependence of this parameter several regimes of the process have been separated. These are clearly distinguishable as well in the surfaces obtained as in the signals gained by the measurement of the process emissions which is the observed quantity chosen. Y1 - 2002 SN - 88-87030-44-8 ER - TY - THES A1 - Donner, Reik Volker T1 - Advanced methods for analysing and modelling multivariate palaeoclimatic time series T1 - Moderne Verfahren zur Analyse und Modellierung multivariater paläoklimatischer Zeitreihen N2 - The separation of natural and anthropogenically caused climatic changes is an important task of contemporary climate research. For this purpose, a detailed knowledge of the natural variability of the climate during warm stages is a necessary prerequisite. Beside model simulations and historical documents, this knowledge is mostly derived from analyses of so-called climatic proxy data like tree rings or sediment as well as ice cores. In order to be able to appropriately interpret such sources of palaeoclimatic information, suitable approaches of statistical modelling as well as methods of time series analysis are necessary, which are applicable to short, noisy, and non-stationary uni- and multivariate data sets. Correlations between different climatic proxy data within one or more climatological archives contain significant information about the climatic change on longer time scales. Based on an appropriate statistical decomposition of such multivariate time series, one may estimate dimensions in terms of the number of significant, linear independent components of the considered data set. In the presented work, a corresponding approach is introduced, critically discussed, and extended with respect to the analysis of palaeoclimatic time series. Temporal variations of the resulting measures allow to derive information about climatic changes. For an example of trace element abundances and grain-size distributions obtained near the Cape Roberts (Eastern Antarctica), it is shown that the variability of the dimensions of the investigated data sets clearly correlates with the Oligocene/Miocene transition about 24 million years before present as well as regional deglaciation events. Grain-size distributions in sediments give information about the predominance of different transportation as well as deposition mechanisms. Finite mixture models may be used to approximate the corresponding distribution functions appropriately. In order to give a complete description of the statistical uncertainty of the parameter estimates in such models, the concept of asymptotic uncertainty distributions is introduced. The relationship with the mutual component overlap as well as with the information missing due to grouping and truncation of the measured data is discussed for a particular geological example. An analysis of a sequence of grain-size distributions obtained in Lake Baikal reveals that there are certain problems accompanying the application of finite mixture models, which cause an extended climatological interpretation of the results to fail. As an appropriate alternative, a linear principal component analysis is used to decompose the data set into suitable fractions whose temporal variability correlates well with the variations of the average solar insolation on millenial to multi-millenial time scales. The abundance of coarse-grained material is obviously related to the annual snow cover, whereas a significant fraction of fine-grained sediments is likely transported from the Taklamakan desert via dust storms in the spring season. N2 - Die Separation natürlicher und anthropogen verursachter Klimaänderungen ist eine bedeutende Aufgabe der heutigen Klimaforschung. Hierzu ist eine detaillierte Kenntnis der natürlichen Klimavariabilität während Warmzeiten unerlässlich. Neben Modellsimulationen und historischen Aufzeichnungen spielt hierfür die Analyse von sogenannten Klima-Stellvertreterdaten eine besondere Rolle, die anhand von Archiven wie Baumringen oder Sediment- und Eisbohrkernen erhoben werden. Um solche Quellen paläoklimatischer Informationen vernünftig interpretieren zu können, werden geeignete statistische Modellierungsansätze sowie Methoden der Zeitreihenanalyse benötigt, die insbesondere auf kurze, verrauschte und instationäre uni- und multivariate Datensätze anwendbar sind. Korrelationen zwischen verschiedenen Stellvertreterdaten eines oder mehrerer klimatologischer Archive enthalten wesentliche Informationen über den Klimawandel auf großen Zeitskalen. Auf der Basis einer geeigneten Zerlegung solcher multivariater Zeitreihen lassen sich Dimensionen schätzen als die Zahl der signifikanten, linear unabhängigen Komponenten des Datensatzes. Ein entsprechender Ansatz wird in der vorliegenden Arbeit vorgestellt, kritisch diskutiert und im Hinblick auf die Analyse von paläoklimatischen Zeitreihen weiterentwickelt. Zeitliche Variationen der entsprechenden Maße erlauben Rückschlüsse auf klimatische Veränderungen. Am Beispiel von Elementhäufigkeiten und Korngrößenverteilungen des Cape-Roberts-Gebietes in der Ostantarktis wird gezeigt, dass die Variabilität der Dimension der untersuchten Datensätze klar mit dem Übergang vom Oligozän zum Miozän vor etwa 24 Millionen Jahren sowie regionalen Abschmelzereignissen korreliert. Korngrößenverteilungen in Sedimenten erlauben Rückschlüsse auf die Dominanz verschiedenen Transport- und Ablagerungsmechanismen. Mit Hilfe von Finite-Mixture-Modellen lassen sich gemessene Verteilungsfunktionen geeignet approximieren. Um die statistische Unsicherheit der Parameterschätzung in solchen Modellen umfassend zu beschreiben, wird das Konzept der asymptotischen Unsicherheitsverteilungen eingeführt. Der Zusammenhang mit dem Überlapp der einzelnen Komponenten und aufgrund des Abschneidens und Binnens der gemessenen Daten verloren gehenden Informationen wird anhand eines geologischen Beispiels diskutiert. Die Analyse einer Sequenz von Korngrößenverteilungen aus dem Baikalsee zeigt, dass bei der Anwendung von Finite-Mixture-Modellen bestimmte Probleme auftreten, die eine umfassende klimatische Interpretation der Ergebnisse verhindern. Stattdessen wird eine lineare Hauptkomponentenanalyse verwendet, um den Datensatz in geeignete Fraktionen zu zerlegen, deren zeitliche Variabilität stark mit den Schwankungen der mittleren Sonneneinstrahlung auf der Zeitskala von Jahrtausenden bis Jahrzehntausenden korreliert. Die Häufigkeit von grobkörnigem Material hängt offenbar mit der jährlichen Schneebedeckung zusammen, während feinkörniges Material möglicherweise zu einem bestimmten Anteil durch Frühjahrsstürme aus der Taklamakan-Wüste herantransportiert wird. KW - Zeitreihenanalyse KW - Paläoklimatologie KW - Multivariate Statistik KW - Korngrößenverteilungen KW - Time Series Analysis KW - Palaeoclimatology KW - Multivariate Statistics KW - Grain-size distributions Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-12560 ER - TY - JOUR A1 - Donner, Reik Volker A1 - Seehafer, Norbert A1 - Sanjuan, Miguel Angel Fernandez A1 - Feudel, Fred T1 - Low-dimensional dynamo modelling and symmetry-breaking bifurcations JF - Physica. D, Nonlinear phenomena N2 - Motivated by the successful Karlsruhe dynamo experiment, a relatively low-dimensional dynamo model is proposed. It is based on a strong truncation of the magnetohydrodynamic (MHD) equations with an external forcing of the Roberts type and the requirement that the model system satisfies the symmetries of the full MHD system, so that the first symmetry-breaking bifurcations can be captured. The backbone of the Roberts dynamo is formed by the Roberts flow, a helical mean magnetic field and another part of the magnetic field coupled to these two by triadic mode interactions. A minimum truncation model (MTM) containing only these energetically dominating primary mode triads is fully equivalent to the widely used first-order smoothing approximation. However, it is shown that this approach works only in the limit of small wave numbers of the excited magnetic field or small magnetic Reynolds numbers ($Rm ll 1$). To obtain dynamo action under more general conditions, secondary mode Y1 - 2006 UR - http://www.sciencedirect.com/science/journal/01672789 U6 - https://doi.org/10.1016/j.physd.2006.08.022 SN - 0167-2789 VL - 223 IS - 2 SP - 151 EP - 162 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Donner, Reik Volker A1 - Feudel, Fred A1 - Seehafer, Norbert A1 - Sanjuan, Miguel Angel Fernandez T1 - Hierarchical modeling of a forced Roberts Dynamo N2 - We investigate the dynamo effect in a flow configuration introduced by G. O. Roberts in 1972. Based on a clear energetic hierarchy of Fourier components on the steady-state dynamo branch, an approximate model of interacting modes is constructed covering all essential features of the complete system but allowing simulations with a minimum amount of computation time. We use this model to study the excitation mechanism of the dynamo, the transition from stationary to time-dependent dynamo solutions and the characteristic properties of the latter ones. Y1 - 2007 UR - http://www.worldscinet.com/ijbc/ijbc.shtml U6 - https://doi.org/10.1142/S021812740701941X SN - 0218-1274 ER - TY - JOUR A1 - Bube, Kevin A1 - Neto, Camilo Rodrigues A1 - Donner, Reik Volker A1 - Schwarz, Udo A1 - Feudel, Ulrike T1 - Linear and nonlinear characterization of surfaces from a laser beam melt ablation process N2 - We apply linear and nonlinear methods to study the properties of surfaces generated by a laser beam melt ablation process. As a result we present a characterization and ordering of the surfaces depending on the adjusted process parameters. Our findings give some insight into the performance of two widely applied multifractal analysis methods-the detrended fluctuation analysis and the wavelet transform modulus maxima method-on short real world data Y1 - 2006 UR - http://iopscience.iop.org/0022-3727/ U6 - https://doi.org/10.1088/0022-3727/39/7/011 SN - 0022-3727 ER - TY - GEN A1 - Siegmund, Jonatan Frederik A1 - Sanders, Tanja G. M. A1 - Heinrich, Ingo A1 - Maaten, Ernst van der A1 - Simard, Sonia A1 - Helle, Gerhard A1 - Donner, Reik Volker T1 - Meteorological drivers of extremes in daily stem radius variations of beech, oak, and pine in Northeastern Germany BT - an event coincidence analysis T2 - Frontiers in plant science N2 - Observed recent and expected future increases in frequency and intensity of climatic extremes in central Europe may pose critical challenges for domestic tree species. Continuous dendrometer recordings provide a valuable source of information on tree stem radius variations, offering the possibility to study a tree's response to environmental influences at a high temporal resolution. In this study, we analyze stem radius variations (SRV) of three domestic tree species (beech, oak, and pine) from 2012 to 2014. We use the novel statistical approach of event coincidence analysis (ECA) to investigate the simultaneous occurrence of extreme daily weather conditions and extreme SRVs, where extremes are defined with respect to the common values at a given phase of the annual growth period. Besides defining extreme events based on individual meteorological variables, we additionally introduce conditional and joint ECA as new multivariate extensions of the original methodology and apply them for testing 105 different combinations of variables regarding their impact on SRV extremes. Our results reveal a strong susceptibility of all three species to the extremes of several meteorological variables. Yet, the inter-species differences regarding their response to the meteorological extremes are comparatively low. The obtained results provide a thorough extension of previous correlation-based studies by emphasizing on the timings of climatic extremes only. We suggest that the employed methodological approach should be further promoted in forest research regarding the investigation of tree responses to changing environmental conditions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 456 KW - dendrometer measurements KW - event coincidence analysis KW - climate extremes KW - growth response Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407943 ER - TY - JOUR A1 - Siegmund, Jonatan F. A1 - Sanders, Tanja G. M. A1 - Heinrich, Ingo A1 - van der Maaten, Ernst A1 - Simard, Sonia A1 - Helle, Gerhard A1 - Donner, Reik Volker T1 - Meteorological Drivers of Extremes in Daily Stem Radius Variations of Beech, Oak, and Pine in Northeastern Germany: An Event Coincidence Analysis JF - Frontiers in plant science N2 - Observed recent and expected future increases in frequency and intensity of climatic extremes in central Europe may pose critical challenges for domestic tree species. Continuous dendrometer recordings provide a valuable source of information on tree stem radius variations, offering the possibility to study a tree's response to environmental influences at a high temporal resolution. In this study, we analyze stem radius variations (SRV) of three domestic tree species (beech, oak, and pine) from 2012 to 2014. We use the novel statistical approach of event coincidence analysis (ECA) to investigate the simultaneous occurrence of extreme daily weather conditions and extreme SRVs, where extremes are defined with respect to the common values at a given phase of the annual growth period. Besides defining extreme events based on individual meteorological variables, we additionally introduce conditional and joint ECA as new multivariate extensions of the original methodology and apply them for testing 105 different combinations of variables regarding their impact on SRV extremes. Our results reveal a strong susceptibility of all three species to the extremes of several meteorological variables. Yet, the inter-species differences regarding their response to the meteorological extremes are comparatively low. The obtained results provide a thorough extension of previous correlation-based studies by emphasizing on the timings of climatic extremes only. We suggest that the employed methodological approach should be further promoted in forest research regarding the investigation of tree responses to changing environmental conditions. KW - dendrometer measurements KW - event coincidence analysis KW - climate extremes KW - growth response Y1 - 2016 U6 - https://doi.org/10.3389/fpls.2016.00733 SN - 1664-462X VL - 7 SP - 4701 EP - 4712 PB - Frontiers Research Foundation CY - Lausanne ER -