TY - JOUR A1 - Risse, Sarah A1 - Hohenstein, Sven A1 - Kliegl, Reinhold A1 - Engbert, Ralf T1 - A theoretical analysis of the perceptual span based on SWIFT simulations of the n+2 boundary paradigm JF - Visual cognition N2 - Eye-movement experiments suggest that the perceptual span during reading is larger than the fixated word, asymmetric around the fixation position, and shrinks in size contingent on the foveal processing load. We used the SWIFT model of eye-movement control during reading to test these hypotheses and their implications under the assumption of graded parallel processing of all words inside the perceptual span. Specifically, we simulated reading in the boundary paradigm and analysed the effects of denying the model to have valid preview of a parafoveal word n + 2 two words to the right of fixation. Optimizing the model parameters for the valid preview condition only, we obtained span parameters with remarkably realistic estimates conforming to the empirical findings on the size of the perceptual span. More importantly, the SWIFT model generated parafoveal processing up to word n + 2 without fitting the model to such preview effects. Our results suggest that asymmetry and dynamic modulation are plausible properties of the perceptual span in a parallel word-processing model such as SWIFT. Moreover, they seem to guide the flexible distribution of processing resources during reading between foveal and parafoveal words. KW - Eye movements KW - Reading KW - Computational modelling KW - Perceptual span KW - Preview Y1 - 2014 U6 - https://doi.org/10.1080/13506285.2014.881444 SN - 1350-6285 SN - 1464-0716 VL - 22 IS - 3-4 SP - 283 EP - 308 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Engelmann, Felix A1 - Vasishth, Shravan A1 - Engbert, Ralf A1 - Kliegl, Reinhold T1 - A framework for modeling the interaction of syntactic processing and eye movement control JF - Topics in cognitive science N2 - We explore the interaction between oculomotor control and language comprehension on the sentence level using two well-tested computational accounts of parsing difficulty. Previous work (Boston, Hale, Vasishth, & Kliegl, 2011) has shown that surprisal (Hale, 2001; Levy, 2008) and cue-based memory retrieval (Lewis & Vasishth, 2005) are significant and complementary predictors of reading time in an eyetracking corpus. It remains an open question how the sentence processor interacts with oculomotor control. Using a simple linking hypothesis proposed in Reichle, Warren, and McConnell (2009), we integrated both measures with the eye movement model EMMA (Salvucci, 2001) inside the cognitive architecture ACT-R (Anderson et al., 2004). We built a reading model that could initiate short Time Out regressions (Mitchell, Shen, Green, & Hodgson, 2008) that compensate for slow postlexical processing. This simple interaction enabled the model to predict the re-reading of words based on parsing difficulty. The model was evaluated in different configurations on the prediction of frequency effects on the Potsdam Sentence Corpus. The extension of EMMA with postlexical processing improved its predictions and reproduced re-reading rates and durations with a reasonable fit to the data. This demonstration, based on simple and independently motivated assumptions, serves as a foundational step toward a precise investigation of the interaction between high-level language processing and eye movement control. KW - Sentence comprehension KW - Eye movements KW - Reading KW - Parsing difficulty KW - Working memory KW - Surprisal KW - Computational modeling Y1 - 2013 U6 - https://doi.org/10.1111/tops.12026 SN - 1756-8757 VL - 5 IS - 3 SP - 452 EP - 474 PB - Wiley-Blackwell CY - Hoboken ER -