TY - GEN A1 - Megow, Jörg A1 - Röhr, Merle I. S. A1 - Schmidt am Busch, Marcel A1 - Renger, Thomas A1 - Mitrić, Roland A1 - Kirstein, Stefan A1 - Rabe, Jürgen P. A1 - May, Volkhard T1 - Site-dependence of van der Waals interaction explains exciton spectra of double-walled tubular J-aggregates N2 - The simulation of the optical properties of supramolecular aggregates requires the development of methods, which are able to treat a large number of coupled chromophores interacting with the environment. Since it is currently not possible to treat large systems by quantum chemistry, the Frenkel exciton model is a valuable alternative. In this work we show how the Frenkel exciton model can be extended in order to explain the excitonic spectra of a specific double-walled tubular dye aggregate explicitly taking into account dispersive energy shifts of ground and excited states due to van der Waals interaction with all surrounding molecules. The experimentally observed splitting is well explained by the site-dependent energy shift of molecules placed at the inner or outer side of the double-walled tube, respectively. Therefore we can conclude that inclusion of the site-dependent dispersive effect in the theoretical description of optical properties of nanoscaled dye aggregates is mandatory. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 191 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-79978 SP - 6741 EP - 6747 ER - TY - JOUR A1 - Megow, Jörg A1 - Röhr, Merle I. S. A1 - Schmidt am Busch, Marcel A1 - Renger, Thomas A1 - Mitrić, Roland A1 - Kirstein, Stefan A1 - Rabe, Jürgen P. A1 - May, Volkhard T1 - Site-dependence of van der Waals interaction explains exciton spectra of double-walled tubular J-aggregates JF - Physical chemistry, chemical physics : PCCP ; a journal of European chemical societies N2 - The simulation of the optical properties of supramolecular aggregates requires the development of methods, which are able to treat a large number of coupled chromophores interacting with the environment. Since it is currently not possible to treat large systems by quantum chemistry, the Frenkel exciton model is a valuable alternative. In this work we show how the Frenkel exciton model can be extended in order to explain the excitonic spectra of a specific double-walled tubular dye aggregate explicitly taking into account dispersive energy shifts of ground and excited states due to van der Waals interaction with all surrounding molecules. The experimentally observed splitting is well explained by the site-dependent energy shift of molecules placed at the inner or outer side of the double-walled tube, respectively. Therefore we can conclude that inclusion of the site-dependent dispersive effect in the theoretical description of optical properties of nanoscaled dye aggregates is mandatory. Y1 - 2015 U6 - https://doi.org/10.1039/c4cp05945j SN - 1463-9084 SN - 1463-9076 VL - 17 IS - 10 SP - 6741 EP - 6747 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zehm, Daniel A1 - Laschewsky, André A1 - Liang, Hua A1 - Rabe, Jürgen P. T1 - Straightforward access to amphiphilic dual bottle brushes by combining RAFT, ATRP, and NMP polymerization in one sequence JF - Macromolecules : a publication of the American Chemical Society N2 - Molecular brush diblock copolymers were synthesized by the orthogonal overlay of the RAFT (reversible addition-fragmentation chain transfer), the ATRP (atom transfer radical polymerization), and the NMP (nitroxide-mediated polymerization) techniques. This unique combination enabled the synthesis of the complex amphiphilic polymers without the need of postpolymerization modifications, using a diblock copolymer intermediate made from two selectively addressable inimers and applying a sequence of four controlled free radical polymerization steps in total. The resulting polymers are composed of a thermosensitive poly(N-isopropylacrylamide) brush as hydrophilic block and a polystyrene brush as hydrophobic block, thus translating the structure of the established amphiphilic diblock copolymers known as macro surfactants to the higher size level of "giant surfactants". The dual molecular brushes and the aggregates formed on ultra flat solid substrates were visualized by scanning force microscopy (SFM). Y1 - 2011 U6 - https://doi.org/10.1021/ma2015613 SN - 0024-9297 VL - 44 IS - 24 SP - 9635 EP - 9641 PB - American Chemical Society CY - Washington ER - TY - CHAP A1 - Laschewsky, André A1 - Liang, Hua A1 - Rabe, Jürgen P. A1 - Skrabania, Katja A1 - Stahlhut, Frank A1 - Weiss, Jan A1 - Zehm, Daniel T1 - Molecularly designed polymer colloids From giant surfactants to multicompartment micelles T2 - Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS Y1 - 2012 SN - 0065-7727 VL - 244 IS - 32 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Zehm, Daniel A1 - Laschewsky, André A1 - Heunemann, Peggy A1 - Gradzielski, Michael A1 - Prevost, Sylvain A1 - Liang, Hua A1 - Rabe, Jürgen P. A1 - Lutz, Jean-Francois T1 - Synthesis and self-assembly of amphiphilic semi-brush and dual brush block copolymers in solution and on surfaces JF - Polymer Chemistry N2 - The combination of two techniques of controlled free radical polymerization, namely the reversible addition fragmentation chain transfer (RAFT) and the atom transfer radical polymerization (ATRP) techniques, together with the use of a macromonomer allowed the synthesis of symmetrical triblock copolymers, designed as amphiphilic dual brushes. One type of brush was made of poly(n-butyl acrylate) as soft hydrophobic block, i.e. characterized by a low glass transition temperature, while the other one was made of hydrophilic poly(ethylene glycol) (PEG). The new triblock polymers represent "giant surfactants" according to their molecular architecture. The hydrophobic and hydrophilic blocks microphase separate in the bulk. In aqueous solution, they aggregate into globular micellar aggregates, their size being determined by the length of the stretched polymer molecules. As determined by the combination of various scattering techniques for the dual brush copolymer, a rather compact structure is formed, which is dominated by the large hydrophobic poly(n-butyl acrylate) block. The aggregation number for the dual brush is about 10 times larger than for the "semi-brush" precursor copolymer, due to the packing requirements for the much bulkier hydrophobic core. On mica surfaces the triblock copolymers adsorb with worm-like backbones and stretched out side chains. Y1 - 2011 U6 - https://doi.org/10.1039/c0py00200c SN - 1759-9954 VL - 2 IS - 1 SP - 137 EP - 147 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Megow, Jörg A1 - Röhr, Merle I. S. A1 - Busch, Marcel A1 - Renger, Thomas A1 - Mitric, Roland A1 - Kirstein, Stefan A1 - Rabe, Jürgen P. A1 - May, Volkhard T1 - Site-dependence of van der Waals interaction explains exciton spectra of double-walled tubular J-aggregates JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The simulation of the optical properties of supramolecular aggregates requires the development of methods, which are able to treat a large number of coupled chromophores interacting with the environment. Since it is currently not possible to treat large systems by quantum chemistry, the Frenkel exciton model is a valuable alternative. In this work we show how the Frenkel exciton model can be extended in order to explain the excitonic spectra of a specific double-walled tubular dye aggregate explicitly taking into account dispersive energy shifts of ground and excited states due to van der Waals interaction with all surrounding molecules. The experimentally observed splitting is well explained by the site-dependent energy shift of molecules placed at the inner or outer side of the double-walled tube, respectively. Therefore we can conclude that inclusion of the site-dependent dispersive effect in the theoretical description of optical properties of nanoscaled dye aggregates is mandatory. Y1 - 2015 U6 - https://doi.org/10.1039/c4cp05945j SN - 1463-9076 SN - 1463-9084 VL - 17 IS - 10 SP - 6741 EP - 6747 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Frisch, Johannes A1 - Schubert, Marcel A1 - Preis, Eduard A1 - Rabe, Jürgen P. A1 - Neher, Dieter A1 - Scherf, Ullrich A1 - Koch, Norbert T1 - Full electronic structure across a polymer heterojunction solar cell JF - Journal of materials chemistry N2 - We correlate the morphology and energy level alignment of bilayer structures comprising the donor poly(3-hexylthiophene) (P3HT) and the acceptor polyfluorene copolymer poly(9,90dialklylfluorene-alt-4,7-bis(2,5-thiendiyl)-2,1,3-benzothiadiazole) (PFTBTT) with the performance of these bilayers in organic photovoltaic cells (OPVCs). The conducting polymer poly(ethylenedioxythiophene): poly (styrenesulfonate) (PEDT:PSS) was used as the bottom electrode and Ca as the top electrode. Ultraviolet photoelectron spectroscopy (UPS) revealed that notable interface dipoles occur at all interfaces across the OPVC structure, highlighting that vacuum level alignment cannot reliably be used to estimate the electronic properties for device design. Particularly the effective electrode work function values (after contact formation with the conjugated polymers) differ significantly from those of the pristine electrode materials. Chemical reactions between PEDT: PSS and P3HT on the one hand and Ca and PFTBTT on the other hand are identified as cause for the measured interface dipoles. The vacuum level shift between P3HT and PFTBTT is related to mutual energy level pinning at gap states. Annealing induced morphological changes at the P3HT/PFTBTT interface increased the efficiency of OPVCs, while the electronic structure was not affected by thermal treatment. Y1 - 2012 U6 - https://doi.org/10.1039/c1jm14968g SN - 0959-9428 VL - 22 IS - 10 SP - 4418 EP - 4424 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zehm, Daniel A1 - Laschewsky, André A1 - Gradzielski, Michael A1 - Prévost, Sylvain A1 - Liang, Hua A1 - Rabe, Jürgen P. A1 - Schweins, Ralf A1 - Gummel, Jérémie T1 - Amphiphilic dual brush block copolymers as "giant surfactants" and their aqueous self-assembly N2 - Amphiphilic dual brush diblock as well as symmetrical triblock polymers were synthesized by the overlay of the reversible addition-fragmentation chain transfer and the nitroxide mediated polymerization (NMP) techniques. While poly(ethylene glycol) brushes served as hydrophilic block, the hydrophobic block was made of polystyrene brushes. The resulting "giant surfactants" correspond structurally to the established amphiphilic diblock and triblock copolymer known as macrosurfactants. The aggregation behavior of the novel "giant surfactants" in aqueous solution was studied by dynamic light scattering, small-angle neutron scattering (SANS), and small-angle X-ray scattering (SAXS) over a large range in reciprocal space. Further, the self-assembled aggregates Were investigated by scanning force microscopy (SFM) after deposition on differently functionalized ultraflat solid substrates. Despite the high fraction of hydrophobic segments, the polymers form stable mesoscopic, spherical aggregates with hydrodynamic diameters in the range of 150-350 nm. Though prepared from well-defined individual polymers, the aggregates show several similarities to hard core latexes. They are stable enough to he deposited without much changes onto surfaces, where they cluster and show Spontaneous sorting according to their size within the clusters, with the larger aggregates being in the center. Y1 - 2010 UR - http://pubs.acs.org/journal/langd5 U6 - https://doi.org/10.1021/La903087p SN - 0743-7463 ER -