TY - THES A1 - Picchi, Douglas Gatte T1 - On the characterisation of biosynthetic pathways and functional metagenomic approaches of cyanobacterial peptides Y1 - 2013 CY - Potsdam ER - TY - JOUR A1 - Kehr, Jan-Christoph A1 - Picchi, Douglas Gatte A1 - Dittmann-Thünemann, Elke T1 - Natural product biosyntheses in cyanobacteria a treasure trove of unique enzymes JF - Beilstein journal of organic chemistry N2 - Cyanobacteria are prolific producers of natural products. Investigations into the biochemistry responsible for the formation of these compounds have revealed fascinating mechanisms that are not, or only rarely, found in other microorganisms. In this article, we survey the biosynthetic pathways of cyanobacteria isolated from freshwater, marine and terrestrial habitats. We especially emphasize modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) pathways and highlight the unique enzyme mechanisms that were elucidated or can be anticipated for the individual products. We further include ribosomal natural products and UV-absorbing pigments from cyanobacteria. Mechanistic insights obtained from the biochemical studies of cyanobacterial pathways can inspire the development of concepts for the design of bioactive compounds by synthetic-biology approaches in the future. KW - cyanobacteria KW - natural products KW - NRPS KW - PKS KW - ribosomal peptides Y1 - 2011 U6 - https://doi.org/10.3762/bjoc.7.191 SN - 1860-5397 VL - 7 IS - 2 SP - 1622 EP - 1635 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, Main ER - TY - JOUR A1 - Gatte-Picchi, Douglas A1 - Weiz, Annika A1 - Ishida, Keishi A1 - Hertweck, Christian A1 - Dittmann-Thünemann, Elke T1 - Functional analysis of environmental DNA-derived microviridins provides new insights into the diversity of the tricyclic peptide family JF - Applied and environmental microbiology N2 - Microviridins represent a unique family of ribosomally synthesized cage-like depsipeptides from cyanobacteria with potent protease-inhibitory activities. The natural diversity of these peptides is largely unexplored. Here, we describe two methodologies that were developed to functionally characterize cryptic microviridin gene clusters from metagenomic DNA. Environmental samples were collected and enriched from cyanobacterial freshwater blooms of different geographical origins containing predominantly Microcystis sp. Microviridins were produced either directly from fosmid clones or after insertion of environmental DNA-derived gene cassettes into a minimal expression platform in Escherichia coli. Three novel microviridin variants were isolated and tested against different serine-type proteases. The comparison of the bioactivity profiles of the new congeners allows deduction of further structure-function relationships for microviridins. Moreover, this study provides new insights into microviridin processing and gene cluster organization. Y1 - 2014 U6 - https://doi.org/10.1128/AEM.03502-13 SN - 0099-2240 SN - 1098-5336 VL - 80 IS - 4 SP - 1380 EP - 1387 PB - American Society for Microbiology CY - Washington ER -