TY - GEN A1 - Sadovnichii, V. A. A1 - Panasyuk, M. I. A1 - Amelyushkin, A. M. A1 - Benghin, V. V. A1 - Garipov, G. K. A1 - Kalegaev, V. V. A1 - Klimov, P. A. A1 - Khrenov, B. A. A1 - Petrov, V. L. A1 - Sharakin, S. A. A1 - Shirokov, A. V. A1 - Svertilov, S. I. A1 - Zotov, M. Y. A1 - Yashin, I. V. A1 - Gorbovskoy, E. S. A1 - Lipunov, V. M. A1 - Park, I. H. A1 - Lee, J. A1 - Jeong, S. A1 - Kim, M. B. A1 - Jeong, H. M. A1 - Shprits, Yuri Y. A1 - Angelopoulos, V. A1 - Russell, C. T. A1 - Runov, A. A1 - Turner, D. A1 - Strangeway, R. J. A1 - Caron, R. A1 - Biktemerova, S. A1 - Grinyuk, A. A1 - Lavrova, M. A1 - Tkachev, L. A1 - Tkachenko, A. A1 - Martinez, O. A1 - Salazar, H. A1 - Ponce, E. T1 - "Lomonosov" satellite-space observatory to study extreme phenomena in space T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The "Lomonosov" space project is lead by Lomonosov Moscow State University in collaboration with the following key partners: Joint Institute for Nuclear Research, Russia, University of California, Los Angeles (USA), University of Pueblo (Mexico), Sungkyunkwan University (Republic of Korea) and with Russian space industry organi-zations to study some of extreme phenomena in space related to astrophysics, astroparticle physics, space physics, and space biology. The primary goals of this experiment are to study: -Ultra-high energy cosmic rays (UHECR) in the energy range of the Greizen-ZatsepinKuzmin (GZK) cutoff; -Ultraviolet (UV) transient luminous events in the upper atmosphere; -Multi-wavelength study of gamma-ray bursts in visible, UV, gamma, and X-rays; -Energetic trapped and precipitated radiation (electrons and protons) at low-Earth orbit (LEO) in connection with global geomagnetic disturbances; -Multicomponent radiation doses along the orbit of spacecraft under different geomagnetic conditions and testing of space segments of optical observations of space-debris and other space objects; -Instrumental vestibular-sensor conflict of zero-gravity phenomena during space flight. This paper is directed towards the general description of both scientific goals of the project and scientific equipment on board the satellite. The following papers of this issue are devoted to detailed descriptions of scientific instruments. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 959 KW - gamma-ray bursts KW - ultra-high energy cosmic rays KW - radiation belts KW - space mission Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-428185 SN - 1866-8372 IS - 959 SP - 1705 EP - 1738 ER - TY - JOUR A1 - Sadovnichii, V. A. A1 - Panasyuk, M. I. A1 - Amelyushkin, A. M. A1 - Bogomolov, V. V. A1 - Benghin, V. V. A1 - Garipov, G. K. A1 - Kalegaev, V. V. A1 - Klimov, P. A. A1 - Khrenov, B. A. A1 - Petrov, V. L. A1 - Sharakin, S. A. A1 - Shirokov, A. V. A1 - Svertilov, S. I. A1 - Zotov, M. Y. A1 - Yashin, I. V. A1 - Gorbovskoy, E. S. A1 - Lipunov, V. M. A1 - Park, I. H. A1 - Lee, J. A1 - Jeong, S. A1 - Kim, M. B. A1 - Jeong, H. M. A1 - Shprits, Yuri Y. A1 - Angelopoulos, V. A1 - Russell, C. T. A1 - Runov, A. A1 - Turner, D. A1 - Strangeway, R. J. A1 - Caron, R. A1 - Biktemerova, S. A1 - Grinyuk, A. A1 - Lavrova, M. A1 - Tkachev, L. A1 - Tkachenko, A. A1 - Martinez, O. A1 - Salazar, H. A1 - Ponce, E. T1 - "Lomonosov" Satellite-Space Observatory to Study Extreme Phenomena in Space JF - Space science reviews N2 - The "Lomonosov" space project is lead by Lomonosov Moscow State University in collaboration with the following key partners: Joint Institute for Nuclear Research, Russia, University of California, Los Angeles (USA), University of Pueblo (Mexico), Sungkyunkwan University (Republic of Korea) and with Russian space industry organi-zations to study some of extreme phenomena in space related to astrophysics, astroparticle physics, space physics, and space biology. The primary goals of this experiment are to study: -Ultra-high energy cosmic rays (UHECR) in the energy range of the Greizen-ZatsepinKuzmin (GZK) cutoff; -Ultraviolet (UV) transient luminous events in the upper atmosphere; -Multi-wavelength study of gamma-ray bursts in visible, UV, gamma, and X-rays; -Energetic trapped and precipitated radiation (electrons and protons) at low-Earth orbit (LEO) in connection with global geomagnetic disturbances; -Multicomponent radiation doses along the orbit of spacecraft under different geomagnetic conditions and testing of space segments of optical observations of space-debris and other space objects; -Instrumental vestibular-sensor conflict of zero-gravity phenomena during space flight. This paper is directed towards the general description of both scientific goals of the project and scientific equipment on board the satellite. The following papers of this issue are devoted to detailed descriptions of scientific instruments. KW - Gamma-ray bursts KW - Ultra-high energy cosmic rays KW - Radiation belts KW - Space mission Y1 - 2017 U6 - https://doi.org/10.1007/s11214-017-0425-x SN - 0038-6308 SN - 1572-9672 VL - 212 SP - 1705 EP - 1738 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Meyer, Dominique M.-A. A1 - Velazquez, Pablo F. A1 - Petruk, Oleh A1 - Chiotellis, Alexandros A1 - Pohl, Martin A1 - Camps-Farina, Artemi A1 - Petrov, Miroslav A1 - Reynoso, Estela M. A1 - Toledo-Roy, Juan C. A1 - Schneiter, E. Matias A1 - Castellanos-Ramirez, Antonio A1 - Esquivel, Alejandro T1 - Rectangular core-collapse supernova remnants BT - application to Puppis A JF - Monthly notices of the Royal Astronomical Society N2 - Core-collapse supernova remnants are the gaseous nebulae of galactic interstellar media (ISM) formed after the explosive death of massive stars. Their morphology and emission properties depend both on the surrounding circumstellar structure shaped by the stellar wind-ISM interaction of the progenitor star and on the local conditions of the ambient medium. In the warm phase of the Galactic plane (n approximate to 1 cm(-3), T approximate to 8000 K), an organized magnetic field of strength 7 mu G has profound consequences on the morphology of the wind bubble of massive stars at rest. In this paper, we show through 2.5D magnetohydrodynamical simulations, in the context of a Wolf-Rayet-evolving 35 M 0 star, that it affects the development of its supernova remnant. When the supernova remnant reaches its middle age (15-20 kyr), it adopts a tubular shape that results from the interaction between the isotropic supernova ejecta and the anisotropic, magnetized, shocked stellar progenitor bubble into which the supernova blast wave expands. Our calculations for non-thermal emission, i.e. radio synchrotron and inverse-Compton radiation, reveal that such supernova remnants can, due to projection effects, appear as rectangular objects in certain cases. This mechanism for shaping a supernova remnant is similar to the bipolar and elliptical planetary nebula production by wind-wind interaction in the low-mass regime of stellar evolution. If such a rectangular core-collapse supernova remnant is created, the progenitor star must not have been a runaway star. We propose that such a mechanism is at work in the shaping of the asymmetric core-collapse supernova remnant Puppis A. KW - stars: evolution KW - stars: massive KW - ISM: supernova remnants KW - methods: MHD Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac1832 SN - 0035-8711 SN - 1365-2966 VL - 515 IS - 1 SP - 594 EP - 605 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Shprits, Yuri Y. A1 - Angelopoulos, V. A1 - Russell, C. T. A1 - Strangeway, R. J. A1 - Runov, A. A1 - Turner, D. A1 - Caron, R. A1 - Cruce, P. A1 - Leneman, D. A1 - Michaelis, I. A1 - Petrov, V. A1 - Panasyuk, M. A1 - Yashin, I. A1 - Drozdov, Alexander A1 - Russell, C. L. A1 - Kalegaev, V. A1 - Nazarkov, I. A1 - Clemmons, J. H. T1 - Scientific Objectives of Electron Losses and Fields INvestigation Onboard Lomonosov Satellite JF - Space science reviews N2 - The objective of the Electron Losses and Fields INvestigation on board the Lomonosov satellite ( ELFIN-L) project is to determine the energy spectrum of precipitating energetic electrons and ions and, together with other polar-orbiting and equatorial missions, to better understand the mechanisms responsible for scattering these particles into the atmosphere. This mission will provide detailed measurements of the radiation environment at low altitudes. The 400-500 km sun-synchronous orbit of Lomonosov is ideal for observing electrons and ions precipitating into the atmosphere. This mission provides a unique opportunity to test the instruments. Similar suite of instruments will be flown in the future NSF-and NASA-supported spinning CubeSat ELFIN satellites which will augment current measurements by providing detailed information on pitch-angle distributions of precipitating and trapped particles. KW - Magnetospheric physics KW - Observations KW - Particles precipitating KW - Particles trapped KW - Radiation belts Y1 - 2017 U6 - https://doi.org/10.1007/s11214-017-0455-4 SN - 0038-6308 SN - 1572-9672 VL - 214 IS - 1 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Meyer, Dominique M.-A. A1 - Petrov, Mykola A1 - Pohl, Martin T1 - Wind nebulae and supernova remnants of very massive stars JF - Monthly notices of the Royal Astronomical Society N2 - A very small fraction of (runaway) massive stars have masses exceeding 60-70 M-circle dot and are predicted to evolve as luminous blue variable and Wolf-Rayet stars before ending their lives as core-collapse supernovae. Our 2D axisymmetric hydrodynamical simulations explore how a fast wind (2000 km s(-1)) and high mass-loss rate (10(-5)M(circle dot) yr(-1)) can impact the morphology of the circumstellar medium. It is shaped as 100 pc-scale wind nebula that can be pierced by the driving star when it supersonically moves with velocity 20-40 km s(-1) through the interstellar medium (ISM) in the Galactic plane. The motion of such runaway stars displaces the position of the supernova explosion out of their bow shock nebula, imposing asymmetries to the eventual shock wave expansion and engendering Cygnus-loop-like supernova remnants. We conclude that the size (up to more than 200 pc) of the filamentary wind cavity in which the chemically enriched supernova ejecta expand, mixing efficiently the wind and ISM materials by at least 10 per cent in number density, can be used as a tracer of the runaway nature of the very massive progenitors of such 0.1Myr old remnants. Our results motivate further observational campaigns devoted to the bow shock of the very massive stars BD+43 degrees 3654 and to the close surroundings of the synchrotron-emitting Wolf-Rayet shell G2.4+1.4. KW - shock waves KW - methods: numerical KW - circumstellar matter KW - stars: massive Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa554 SN - 0035-8711 SN - 1365-2966 VL - 493 IS - 3 SP - 3548 EP - 3564 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Meyer, Dominique M.-A. A1 - Pohl, Martin A1 - Petrov, Miroslav A1 - Egberts, Kathrin T1 - Mixing of materials in magnetized core-collapse supernova remnants JF - Monthly notices of the Royal Astronomical Society N2 - Core-collapse supernova remnants are structures of the interstellar medium (ISM) left behind the explosive death of most massive stars ( ?40 M-?). Since they result in the expansion of the supernova shock wave into the gaseous environment shaped by the star's wind history, their morphology constitutes an insight into the past evolution of their progenitor star. Particularly, fast-mo ving massiv e stars can produce asymmetric core-collapse superno va remnants. We inv estigate the mixing of materials in core-collapse supernova remnants generated by a moving massive 35 M-? star, in a magnetized ISM. Stellar rotation and the wind magnetic field are time-dependently included into the models which follow the entire evolution of the stellar surroundings from the zero-age main-sequence to 80 kyr after the supernova explosion. It is found that very little main-sequence material is present in remnants from moving stars, that the Wolf-Rayet wind mixes very efficiently within the 10 kyr after the explosion, while the red supergiant material is still unmixed by 30 per cent within 50 kyr after the supernova. Our results indicate that the faster the stellar motion, the more complex the internal organization of the supernova remnant and the more ef fecti ve the mixing of ejecta therein. In contrast, the mixing of stellar wind material is only weakly affected by progenitor motion, if at all. KW - ISM : supernova remnants KW - (magnetohydrodynamics) MHD KW - stars evolution KW - stars: massive Y1 - 2023 U6 - https://doi.org/10.1093/mnras/stad906 SN - 0035-8711 SN - 1365-2966 VL - 521 IS - 4 SP - 5354 EP - 5371 PB - Oxford Univ. Press CY - Oxford ER -