TY - JOUR A1 - Hu, Neng A1 - Lin, Li A1 - Metwalli, Ezzeldin A1 - Bießmann, Lorenz A1 - Philipp, Martine A1 - Hildebrand, Viet A1 - Laschewsky, André A1 - Papadakis, Christine M. A1 - Cubitt, Robert A1 - Zhong, Qi A1 - Müller-Buschbaum, Peter T1 - Kinetics of water transfer between the LCST and UCST thermoresponsive blocks in diblock copolymer thin films monitored by in situ neutron reflectivity JF - Advanced materials interfaces N2 - The kinetics of water transfer between the lower critical solution temperature (LCST) and upper critical solution temperature (UCST) thermoresponsive blocks in about 10 nm thin films of a diblock copolymer is monitored by in situ neutron reflectivity. The UCST-exhibiting block in the copolymer consists of the zwitterionic poly(4((3-methacrylamidopropyl)dimethylammonio)butane-1-sulfonate), abbreviated as PSBP. The LCST-exhibiting block consists of the nonionic poly(N-isopropylacrylamide), abbreviated as PNIPAM. The as-prepared PSBP80-b-PNIPAM(400) films feature a three-layer structure, i.e., PNIPAM, mixed PNIPAM and PSBP, and PSBP. Both blocks have similar transition temperatures (TTs), namely around 32 degrees C for PNIPAM, and around 35 degrees C for PSBP, and with a two-step heating protocol (20 degrees C to 40 degrees C and 40 degrees C to 80 degrees C), both TTs are passed. The response to such a thermal stimulus turns out to be complex. Besides a three-step process (shrinkage, rearrangement, and reswelling), a continuous transfer of D2O from the PNIPAM to the PSBP block is observed. Due to the existence of both, LCST and UCST blocks in the PSBP80-b-PNIPAM(400 )film, the water transfer from the contracting PNIPAM, and mixed layers to the expanding PSBP layer occurs. Thus, the hydration kinetics and thermal response differ markedly from a thermoresponsive polymer film with a single LCST transition. KW - block copolymer KW - dual thermoresponsive KW - kinetic water transfer KW - neutron KW - reflectivity KW - thin film Y1 - 2022 U6 - https://doi.org/10.1002/admi.202201913 SN - 2196-7350 VL - 10 IS - 3 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hildebrand, Viet A1 - Laschewsky, Andre A1 - Päch, Michael A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - Effect of the zwitterion structure on the thermo-responsive behaviour of poly(sulfobetaine methacrylates) JF - Polymer Chemistry N2 - A series of new sulfobetaine methacrylates, including nitrogen-containing saturated heterocycles, was synthesised by systematically varying the substituents of the zwitterionic group. Radical polymerisation via the RAFT (reversible addition–fragmentation chain transfer) method in trifluoroethanol proceeded smoothly and was well controlled, yielding polymers with predictable molar masses. Molar mass analysis and control of the end-group fidelity were facilitated by end-group labeling with a fluorescent dye. The polymers showed distinct thermo-responsive behaviour of the UCST (upper critical solution temperature) type in an aqueous solution, which could not be simply correlated to their molecular structure via an incremental analysis of the hydrophilic and hydrophobic elements incorporated within them. Increasing the spacer length separating the ammonium and the sulfonate groups of the zwitterion moiety from three to four carbons increased the phase transition temperatures markedly, whereas increasing the length of the spacer separating the ammonium group and the carboxylate ester group on the backbone from two to three carbons provoked the opposite effect. Moreover, the phase transition temperatures of the analogous polyzwitterions decreased in the order dimethylammonio > morpholinio > piperidinio alkanesulfonates. In addition to the basic effect of the polymers’ precise molecular structure, the concentration and the molar mass dependence of the phase transition temperatures were studied. Furthermore, we investigated the influence of added low molar mass salts on the aqueous-phase behaviour for sodium chloride and sodium bromide as well as sodium and ammonium sulfate. The strong effects evolved in a complex way with the salt concentration. The strength of these effects depended on the nature of the anion added, increasing in the order sulfate < chloride < bromide, thus following the empirical Hofmeister series. In contrast, no significant differences were observed when changing the cation, i.e. when adding sodium or ammonium sulfate. Y1 - 2016 U6 - https://doi.org/10.1039/c6py01220e SN - 1759-9954 SN - 1759-9962 VL - 8 SP - 310 EP - 322 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Zhong, Qi A1 - Metwalli, Ezzeldin A1 - Rawolle, Monika A1 - Kaune, Gunar A1 - Bivigou Koumba, Achille Mayelle A1 - Laschewsky, André A1 - Papadakis, Christine M. A1 - Cubitt, Robert A1 - Müller-Buschbaum, Peter T1 - Structure and Thermal Response of Thin Thermoresponsive Polystyrene-block-poly(methoxydiethylene glycol acrylate)-block-polystyrene Films JF - Macromolecules : a publication of the American Chemical Society N2 - Thin thermoresponsive films of the triblock copolymer polystyrene-block-poly(methoxydiethylene glycol acrylate)-block-polystyrene (P(S-b-MDEGA-b-S)) are investigated on silicon substrates. By spin coating, homogeneous and smooth films are prepared for a range of film thicknesses from 6 to 82 nm. Films are stable with respect to dewetting as investigated with optical microscopy and atomic force microscopy. P(S-b-MDEGA-b-S) films with a thickness of 39 nm exhibit a phase transition of the lower critical solution temperature (LCST) type at 36.5 degrees C. The swelling and the thermoresponsive behavior of the films with respect to a sudden thermal stimulus are probed with in-situ neutron reflectivity. In undersaturated water vapor swelling proceeds without thickness increase. The thermoresponse proceeds in three steps: First, the film rejects water as the temperature is above LCST. Next, it stays constant for 600 s, before the collapsed film takes up water again. With ATR-FTIR measurements, changes of bound water in the film caused by different thermal stimuli are studied. Hydrogen bonds only form between C=O and water in the swollen film. Above the LCST most hydrogen bonds with water are broken, but some amount of bound water remains inside the film in agreement with the neutron reflectivity data. Grazing-incidence small-angle X-ray scattering (GISAXS) shows that the inner lateral structure is not significantly influenced by the different thermal stimuli. Y1 - 2013 U6 - https://doi.org/10.1021/ma400627u SN - 0024-9297 VL - 46 IS - 10 SP - 4069 EP - 4080 PB - American Chemical Society CY - Washington ER - TY - BOOK A1 - Olsen, Susan A1 - Stiebels, Barbara A1 - Bierwisch, Manfred A1 - Zimmermann, Ilse A1 - Cavar, Damir A1 - Georgi, Doreen A1 - Bacskai-Atkari, Julia A1 - Alexiadou, Artemis A1 - Błaszczak, Joanna A1 - Müller, Gereon A1 - Šimík, Radek A1 - Meinunger, André A1 - Thiersch, Craig A1 - Arnhold, Anja A1 - Féry, Caroline A1 - Bayer, Josef A1 - Titov, Elena A1 - Fominyam, Henry A1 - Tran, Thuan A1 - Bornkessel-Schlesewsky, Ina D. A1 - Schlesewsky, Matthias A1 - Zimmermann, Malte A1 - Häussler, Jana A1 - Mucha, Anne A1 - Schmidt, Andreas A1 - Weskott, Thomas A1 - Wierzba, Marta A1 - Stede, Manfred A1 - Skopeteas, Stavros A1 - Gafos, Adamantios I. A1 - Haider, Hubert A1 - Wunderlich, Dieter A1 - Staudacher, Peter A1 - Rauh, Gisa ED - Brown, Jessica M. M. ED - Schmidt, Andreas ED - Wierzba, Marta T1 - Of Trees and Birds BT - A Festschrift for Gisbert Fanselow N2 - Gisbert Fanselow’s work has been invaluable and inspiring to many ­researchers working on syntax, morphology, and information ­structure, both from a ­theoretical and from an experimental perspective. This ­volume comprises a collection of articles dedicated to Gisbert on the occasion of his 60th birthday, covering a range of topics from these areas and beyond. The contributions have in ­common that in a broad sense they have to do with language structures (and thus trees), and that in a more specific sense they have to do with birds. They thus cover two of Gisbert’s major interests in- and outside of the linguistic world (and ­perhaps even at the interface). KW - Festschrift KW - Linguistik KW - Syntax KW - Morphologie KW - Informationsstruktur KW - festschrift KW - linguistics KW - syntax KW - morphology KW - information structure Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426542 SN - 978-3-86956-457-9 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - van Afferden, Manfred A1 - Rahman, Khaja Z. A1 - Mosig, Peter A1 - De Biase, Cecilia A1 - Thullner, Martin A1 - Oswald, Sascha A1 - Müller, Roland A. T1 - Remediation of groundwater contaminated with MTBE and benzene the potential of vertical-flow soil filter systems JF - Water research N2 - Field investigations on the treatment of MTBE and benzene from contaminated groundwater in pilot or full-scale constructed wetlands are lacking hugely. The aim of this study was to develop a biological treatment technology that can be operated in an economic, reliable and robust mode over a long period of time. Two pilot-scale vertical-flow soil filter eco-technologies, a roughing filter (RF) and a polishing filter (PF) with plants (willows), were operated independently in a single-stage configuration and coupled together in a multi-stage (RF + PF) configuration to investigate the MTBE and benzene removal performances. Both filters were loaded with groundwater from a refinery site contaminated with MTBE and benzene as the main contaminants, with a mean concentration of 2970 +/- 816 and 13,966 +/- 1998 mu g L(-1), respectively. Four different hydraulic loading rates (HLRs) with a stepwise increment of 60, 120, 240 and 480 L m(-2) d(-1) were applied over a period of 388 days in the single-stage operation. At the highest HLR of 480 L m(-2)d(-1), the mean concentrations of MTBE and benzene were found to be 550 +/- 133 and 65 +/- 123 mu g L(-1) in the effluent of the RF. In the effluent of the PP system, respective mean MTBE and benzene concentrations of 49 +/- 77 and 0.5 +/- 0.2 mu g L(-1) were obtained, which were well below the relevant MTBE and benzene limit values of 200 and 1 mu g L-1 for drinking water quality. But a dynamic fluctuation in the effluent MTBE concentration showed a lack of stability in regards to the increase in the measured values by nearly 10%, which were higher than the limit value. Therefore, both (RF + PF) filters were combined in a multi-stage configuration and the combined system proved to be more stable and effective with a highly efficient reduction of the MTBE and benzene concentrations in the effluent. Nearly 70% of MTBE and 98% of benzene were eliminated from the influent groundwater by the first vertical filter (RF) and the remaining amount was almost completely diminished (similar to 100% reduction) after passing through the second filter (PF), with a mean MTBE and benzene concentration of 5 +/- 10 and 0.6 +/- 0.2 mu g L(-1) in the final effluent. The emission rate of volatile organic compounds mass into the air from the systems was less than 1% of the inflow mass loading rate. The results obtained in this study not only demonstrate the feasibility of vertical-flow soil filter systems for treating groundwater contaminated with MTBE and benzene, but can also be considered a major step forward towards their application under full-scale conditions for commercial purposes in the oil and gas industries. KW - Benzene KW - Groundwater remediation KW - Hydraulic loading rate KW - MTBE KW - Pilot-scale constructed wetland KW - Vertical-flow soil filter KW - Willow tree Y1 - 2011 U6 - https://doi.org/10.1016/j.watres.2011.07.010 SN - 0043-1354 VL - 45 IS - 16 SP - 5063 EP - 5074 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Meier, Lars A. A1 - Krauze, Patryk A1 - Prater, Isabel A1 - Horn, Fabian A1 - Schaefer, Carlos Ernesto Reynaud A1 - Scholten, Thomas A1 - Wagner, Dirk A1 - Müller, Carsten Werner A1 - Kühn, Peter T1 - Pedogenic and microbial interrelation in initial soils under semiarid climate on James Ross Island, Antarctic Peninsula region JF - Biogeosciences N2 - James Ross Island (JRI) offers the exceptional opportunity to study microbial-driven pedogenesis without the influence of vascular plants or faunal activities (e.g., penguin rookeries). In this study, two soil profiles from JRI (one at Santa Martha Cove - SMC, and another at Brandy Bay BB) were investigated, in order to gain information about the initial state of soil formation and its interplay with prokaryotic activity, by combining pedological, geochemical and microbiological methods. The soil profiles are similar with respect to topographic position and parent material but are spatially separated by an orographic barrier and therefore represent windward and leeward locations towards the mainly southwesterly winds. These different positions result in differences in electric conductivity of the soils caused by additional input of bases by sea spray at the windward site and opposing trends in the depth functions of soil pH and electric conductivity. Both soils are classified as Cryosols, dominated by bacterial taxa such as Actinobacteria, Proteobacteria, Acidobacteria, Gemmatimonadetes and Chloroflexi. A shift in the dominant taxa was observed below 20 cm in both soils as well as an increased abundance of multiple operational taxonomic units (OTUs) related to potential chemolithoautotrophic Acidiferrobacteraceae. This shift is coupled by a change in microstructure. While single/pellicular grain microstructure (SMC) and platy microstructure (BB) are dominant above 20 cm, lenticular microstructure is dominant below 20 cm in both soils. The change in microstructure is caused by frequent freeze-thaw cycles and a relative high water content, and it goes along with a development of the pore spacing and is accompanied by a change in nutrient content. Multivariate statistics revealed the influence of soil parameters such as chloride, sulfate, calcium and organic carbon contents, grain size distribution and pedogenic oxide ratios on the overall microbial community structure and explained 49.9% of its variation. The correlation of the pedogenic oxide ratios with the compositional distribution of microorganisms as well as the relative abundance certain microorganisms such as potentially chemolithotrophic Acidiferrobacteraceae-related OTUs could hint at an interplay between soil-forming processes and microorganisms. Y1 - 2019 U6 - https://doi.org/10.5194/bg-16-2481-2019 SN - 1726-4170 SN - 1726-4189 VL - 16 IS - 12 SP - 2481 EP - 2499 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Reitenbach, Julija A1 - Geiger, Christina A1 - Wang, Peixi A1 - Vagias, Apostolos N. A1 - Cubitt, Robert A1 - Schanzenbach, Dirk A1 - Laschewsky, André A1 - Papadakis, Christine M. A1 - Müller-Buschbaum, Peter T1 - Effect of magnesium salts with chaotropic anions on the swelling behavior of PNIPMAM thin films JF - Macromolecules : a publication of the American Chemical Society N2 - Poly(N-isopropylmethacrylamide) (PNIPMAM) is a stimuli responsive polymer, which in thin film geometry exhibits a volume-phase transition upon temperature increase in water vapor. The swelling behavior of PNIPMAM thin films containing magnesium salts in water vapor is investigated in view of their potential application as nanodevices. Both the extent and the kinetics of the swelling ratio as well as the water content are probed with in situ time-of-flight neutron reflectometry. Additionally, in situ Fourier-transform infrared (FTIR) spectroscopy provides information about the local solvation of the specific functional groups, while two-dimensional FTIR correlation analysis further elucidates the temporal sequence of solvation events. The addition of Mg(ClO4)2 or Mg(NO3)2 enhances the sensitivity of the polymer and therefore the responsiveness of switches and sensors based on PNIPMAM thin films. It is found that Mg(NO3)2 leads to a higher relative water uptake and therefore achieves the highest thickness gain in the swollen state. Y1 - 2023 U6 - https://doi.org/10.1021/acs.macromol.2c02282 SN - 0024-9297 SN - 1520-5835 VL - 56 IS - 2 SP - 567 EP - 577 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Geiger, Christina A1 - Reitenbach, Julija A1 - Henschel, Cristiane A1 - Kreuzer, Lucas A1 - Widmann, Tobias A1 - Wang, Peixi A1 - Mangiapia, Gaetano A1 - Moulin, Jean-François A1 - Papadakis, Christine M. A1 - Laschewsky, André A1 - Müller-Buschbaum, Peter T1 - Ternary nanoswitches realized with multiresponsive PMMA-b-PNIPMAM films in mixed water/acetone vapor atmospheres JF - Advanced engineering materials N2 - To systematically add functionality to nanoscale polymer switches, an understanding of their responsive behavior is crucial. Herein, solvent vapor stimuli are applied to thin films of a diblock copolymer consisting of a short poly(methyl methacrylate) (PMMA) block and a long poly(N-isopropylmethacrylamide) (PNIPMAM) block for realizing ternary nanoswitches. Three significantly distinct film states are successfully implemented by the combination of amphiphilicity and co-nonsolvency effect. The exposure of the thin films to nitrogen, pure water vapor, and mixed water/acetone (90 vol%/10 vol%) vapor switches the films from a dried to a hydrated (solvated and swollen) and a water/acetone-exchanged (solvated and contracted) equilibrium state. These three states have distinctly different film thicknesses and solvent contents, which act as switch positions "off," "on," and "standby." For understanding the switching process, time-of-flight neutron reflectometry (ToF-NR) and spectral reflectance (SR) studies of the swelling and dehydration process are complemented by information on the local solvation of functional groups probed with Fourier-transform infrared (FTIR) spectroscopy. An accelerated responsive behavior beyond a minimum hydration/solvation level is attributed to the fast build-up and depletion of the hydration shell of PNIPMAM, caused by its hydrophobic moieties promoting a cooperative hydration character. KW - co-nonsolvency KW - diblock copolymers KW - nanoswitches KW - neutron reflectometry KW - thin films Y1 - 2021 U6 - https://doi.org/10.1002/adem.202100191 SN - 1438-1656 SN - 1527-2648 VL - 23 IS - 11 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Zhong, Qi A1 - Metwalli, Ezzeldin A1 - Rawolle, Monika A1 - Kaune, Gunar A1 - Bivigou Koumba, Achille Mayelle A1 - Laschewsky, Andre A1 - Papadakis, Christine M. A1 - Cubitt, Robert A1 - Wang, Jiping A1 - Müller-Buschbaum, Peter T1 - Vacuum induced dehydration of swollen poly(methoxy diethylene glycol acrylate) and polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene films probed by in-situ neutron reflectivity JF - Polymer : the international journal for the science and technology of polymers N2 - The isothermal vacuum-induced dehydration of thin films made of poly(methoxy diethylene glycol acrylate) (PMDEGA), which were swollen under ambient conditions, is studied. The dehydration behavior of the homopolymer film as well as of a nanostructured film of the amphiphilic triblock copolymer polystyrene-block-poly(methoxy diethylene glycol acrylate)-block-polystyrene, abbreviated as PS-b-PMDEGA-b-PS, are probed, and compared to the thermally induced dehydration behavior of such thin thermo-responsive films when they pass through their LCST-type coil-to globule collapse transition. The dehydration kinetics is followed by in-situ neutron reflectivity measurements. Contrast results from the use of deuterated water. Water content and film thickness are significantly reduced during the process, which can be explained by Schott second order kinetics theory for both films. The water content of the dehydrated equilibrium state from this model is very close to the residual water content obtained from the final static measurements, indicating that residual water still remains in the film even after prolonged exposure to the vacuum. In the PS-b-PMDEGA-b-PS film that shows micro-phase separation, the hydrophobic PS domains modify the dehydration process by hindering the water removal, and thus retarding dehydration by about 30%. Whereas residual water remains tightly bound in the PMDEGA domains, water is completely removed from the PS domains of the block copolymer film. (C) 2017 Elsevier Ltd. All rights reserved. KW - Dehydration KW - Vacuum drying KW - In-situ neutron reflectivity Y1 - 2017 U6 - https://doi.org/10.1016/j.polymer.2017.07.066 SN - 0032-3861 SN - 1873-2291 VL - 124 SP - 263 EP - 273 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kyriakos, Konstantinos A1 - Philipp, Martine A1 - Lin, Che-Hung A1 - Dyakonova, Margarita A1 - Vishnevetskaya, Natalya A1 - Grillo, Isabelle A1 - Zaccone, Alessio A1 - Miasnikova, Anna A1 - Laschewsky, Andre A1 - Müller-Buschbaum, Peter A1 - Papadakis, Christine M. T1 - Quantifying the Interactions in the Aggregation of Thermoresponsive Polymers: The Effect of Cononsolvency JF - Macromolecular rapid communications N2 - The aggregation kinetics of thermoresponsive core-shell micelles with a poly(N-isopropyl acrylamide) shell in pure water or in mixtures of water with the cosolvents methanol or ethanol at mole fractions of 5% is investigated during a temperature jump across the respective cloud point. Characteristically, these mixtures give rise to cononsolvency behavior. At the cloud point, aggregates are formed, and their growth is followed with time-resolved small-angle neutron scattering. Using the reversible association model, the interaction potential between the aggregates is determined from their growth rate in dependence on the cosolvents. The effect of the cosolvent is attributed to the interaction potential on the structured layer of hydration water around the aggregates. It is surmised that the latter is perturbed by the cosolvent and thus the residual repulsive hydration force between the aggregates is reduced. The larger the molar volume of the cosolvent, the more pronounced is the effect. This framework provides a molecular-level understanding of solvent-mediated effective interactions in polymer solutions and new opportunities for the rational control of self-assembly in complex soft matter systems. KW - colloidal aggregation KW - cononsolvency KW - interaction potential KW - polymer solutions KW - self-assembled micelles KW - thermoresponsive polymers Y1 - 2016 U6 - https://doi.org/10.1002/marc.201500583 SN - 1022-1336 SN - 1521-3927 VL - 37 SP - 420 EP - 425 PB - Wiley-VCH CY - Weinheim ER -