TY - JOUR A1 - Walz, Bernd A1 - Baumann, Otto A1 - Krach, Christian A1 - Baumann, Arnd A1 - Blenau, Wolfgang T1 - The aminergic control of cockroach salivary glands N2 - The acinar salivary glands of cockroaches receive a dual innervation from the subesophageal ganglion and the stomatogastric nervous system. Acinar cells are surrounded by a plexus of dopaminergic and serotonergic varicose fibers. In addition, seroton-ergic terminals lie deep in the extracellulor spaces between acinar cells. Excitation-secretion coupling in cockroach salivary glands is stimulated by both dopamine and serotonin. These monoamines cause increases in the intracellular concentrations of cAMP and Ca2+. Stimulation of the glands by serotonin results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Thus, two elementary secretary processes, namely electrolyte/water secretion and protein secretion, are triggered by different aminergic transmitters. Because of its simplicity and experimental accessibility, cockroach salivary glands have been used extensively as a model system to study the cellular actions of biogenic amines and to examine the pharmacological properties of biogenic amine receptors. In this review, we summarize current knowledge concerning the aminergic control of cockroach salivary glands and discuss our efforts to characterize Periplaneta biogenic amine receptors molecularly Y1 - 2006 UR - 1960 = Doi 10.1002/Arch.20128 ER - TY - JOUR A1 - Schwarze, Thomas A1 - Kelling, Alexandra A1 - Müller, Holger A1 - Trautmann, Michael A1 - Klamroth, Tillmann A1 - Baumann, Otto A1 - Strauch, Peter A1 - Holdt, Hans-Jürgen T1 - N-2-Pyridinylmethyl-N '-arylmethyl-diaminomaleonitriles: New Highly Selective Chromogenic Chemodosimeters for Copper(II) JF - Chemistry - a European journal KW - amides KW - chemodosimeter KW - colorimetric detection KW - copper KW - sensors KW - UV KW - Vis spectroscopy Y1 - 2012 U6 - https://doi.org/10.1002/chem.201201731 SN - 0947-6539 VL - 18 IS - 34 SP - 10506 EP - 10510 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Krüger, Stefanie A1 - Schwarze, Michael A1 - Baumann, Otto A1 - Günter, Christina A1 - Bruns, Michael A1 - Kübel, Christian A1 - Szabo, Dorothee Vinga A1 - Meinusch, Rafael A1 - Bermudez, Veronica de Zea A1 - Taubert, Andreas T1 - Bombyx mori silk/titania/gold hybrid materials for photocatalytic water splitting BT - combining renewable raw materials with clean fuels JF - Beilstein journal of nanotechnology N2 - The synthesis, structure, and photocatalytic water splitting performance of two new titania (TiO2)/gold(Au)/Bombyx mori silk hybrid materials are reported. All materials are monoliths with diameters of up to ca. 4.5 cm. The materials are macroscopically homogeneous and porous with surface areas between 170 and 210 m(2)/g. The diameter of the TiO2 nanoparticles (NPs) - mainly anatase with a minor fraction of brookite - and the Au NPs are on the order of 5 and 7-18 nm, respectively. Addition of poly(ethylene oxide) to the reaction mixture enables pore size tuning, thus providing access to different materials with different photocatalytic activities. Water splitting experiments using a sunlight simulator and a Xe lamp show that the new hybrid materials are effective water splitting catalysts and produce up to 30 mmol of hydrogen per 24 h. Overall the article demonstrates that the combination of a renewable and robust scaffold such as B. mori silk with a photoactive material provides a promising approach to new monolithic photocatalysts that can easily be recycled and show great potential for application in lightweight devices for green fuel production. KW - Bombyx mori silk KW - gold KW - photocatalytic water splitting KW - titania Y1 - 2018 U6 - https://doi.org/10.3762/bjnano.9.21 SN - 2190-4286 VL - 9 SP - 187 EP - 204 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, Main ER -