TY - JOUR A1 - Nunes-Nesi, Adriano A1 - Alseekh, Saleh A1 - de Oliveira Silva, Franklin Magnum A1 - Omranian, Nooshin A1 - Lichtenstein, Gabriel A1 - Mirnezhad, Mohammad A1 - Romero Gonzalez, Roman R. A1 - Sabio y Garcia, Julia A1 - Conte, Mariana A1 - Leiss, Kirsten A. A1 - Klinkhamer, Peter Gerardus Leonardus A1 - Nikoloski, Zoran A1 - Carrari, Fernando A1 - Fernie, Alisdair R. T1 - Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds JF - Metabolomics N2 - IntroductionTo date, most studies of natural variation and metabolite quantitative trait loci (mQTL) in tomato have focused on fruit metabolism, leaving aside the identification of genomic regions involved in the regulation of leaf metabolism.ObjectiveThis study was conducted to identify leaf mQTL in tomato and to assess the association of leaf metabolites and physiological traits with the metabolite levels from other tissues.MethodsThe analysis of components of leaf metabolism was performed by phenotypying 76 tomato ILs with chromosome segments of the wild species Solanum pennellii in the genetic background of a cultivated tomato (S. lycopersicum) variety M82. The plants were cultivated in two different environments in independent years and samples were harvested from mature leaves of non-flowering plants at the middle of the light period. The non-targeted metabolite profiling was obtained by gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). With the data set obtained in this study and already published metabolomics data from seed and fruit, we performed QTL mapping, heritability and correlation analyses.ResultsChanges in metabolite contents were evident in the ILs that are potentially important with respect to stress responses and plant physiology. By analyzing the obtained data, we identified 42 positive and 76 negative mQTL involved in carbon and nitrogen metabolism.ConclusionsOverall, these findings allowed the identification of S. lycopersicum genome regions involved in the regulation of leaf primary carbon and nitrogen metabolism, as well as the association of leaf metabolites with metabolites from seeds and fruits. KW - Metabolite QTL KW - Tomato KW - Leaf metabolism KW - Metabolite network Y1 - 2019 U6 - https://doi.org/10.1007/s11306-019-1503-8 SN - 1573-3882 SN - 1573-3890 VL - 15 IS - 46 PB - Springer CY - New York ER - TY - JOUR A1 - Alseekh, Saleh A1 - Tohge, Takayuki A1 - Wendenberg, Regina A1 - Scossa, Federico A1 - Omranian, Nooshin A1 - Li, Jie A1 - Kleessen, Sabrina A1 - Giavalisco, Patrick A1 - Pleban, Tzili A1 - Müller-Röber, Bernd A1 - Zamir, Dani A1 - Nikoloski, Zoran A1 - Fernie, Alisdair R. T1 - Identification and Mode of Inheritance of Quantitative Trait Loci for Secondary Metabolite Abundance in Tomato JF - The plant cell N2 - A large-scale metabolic quantitative trait loci (mQTL) analysis was performed on the well-characterized Solanum pennellii introgression lines to investigate the genomic regions associated with secondary metabolism in tomato fruit pericarp. In total, 679 mQTLs were detected across the 76 introgression lines. Heritability analyses revealed that mQTLs of secondary metabolism were less affected by environment than mQTLs of primary metabolism. Network analysis allowed us to assess the interconnectivity of primary and secondary metabolism as well as to compare and contrast their respective associations with morphological traits. Additionally, we applied a recently established real-time quantitative PCR platform to gain insight into transcriptional control mechanisms of a subset of the mQTLs, including those for hydroxycinnamates, acyl-sugar, naringenin chalcone, and a range of glycoalkaloids. Intriguingly, many of these compounds displayed a dominant-negative mode of inheritance, which is contrary to the conventional wisdom that secondary metabolite contents decreased on domestication. We additionally performed an exemplary evaluation of two candidate genes for glycolalkaloid mQTLs via the use of virus-induced gene silencing. The combined data of this study were compared with previous results on primary metabolism obtained from the same material and to other studies of natural variance of secondary metabolism. Y1 - 2015 U6 - https://doi.org/10.1105/tpc.114.132266 SN - 1040-4651 SN - 1532-298X VL - 27 IS - 3 SP - 485 EP - 512 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Pandey, Prashant K. A1 - Yu, Jing A1 - Omranian, Nooshin A1 - Alseekh, Saleh A1 - Vaid, Neha A1 - Fernie, Alisdair R. A1 - Nikoloski, Zoran A1 - Laitinen, Roosa A. E. T1 - Plasticity in metabolism underpins local responses to nitrogen in Arabidopsis thaliana populations JF - Plant Direct N2 - Nitrogen (N) is central for plant growth, and metabolic plasticity can provide a strategy to respond to changing N availability. We showed that two local A. thaliana populations exhibited differential plasticity in the compounds of photorespiratory and starch degradation pathways in response to three N conditions. Association of metabolite levels with growth-related and fitness traits indicated that controlled plasticity in these pathways could contribute to local adaptation and play a role in plant evolution. KW - Arabidopsis thaliana KW - natural variation KW - nitrogen availability KW - photorespiration KW - plasticity Y1 - 2019 U6 - https://doi.org/10.1002/pld3.186 SN - 2475-4455 VL - 3 IS - 11 PB - John Wiley & sonst LTD CY - Chichester ER -