TY - THES A1 - Novakovic-Marinkovic, Nina T1 - Optical control of bubble domains and skyrmions in thin films T1 - Optische Kontrolle von Blasendomänen und Skyrmionen in dünnen Schichten N2 - Laser induced switching offers an attractive possibility to manipulate small magnetic domains for prospective memory and logic devices on ultrashort time scales. Moreover, optical control of magnetization without high applied magnetic fields allows manipulation of magnetic domains individually and locally, without expensive heat dissipation. One of the major challenges for developing novel optically controlled magnetic memory and logic devices is reliable formation and annihilation of non-volatile magnetic domains that can serve as memory bits in ambient conditions. Magnetic skyrmions, topologically nontrivial spin textures, have been studied intensively since their discovery due to their stability and scalability in potential spintronic devices. However, skyrmion formation and, especially, annihilation processes are still not completely understood and further investigation on such mechanisms are needed. The aim of this thesis is to contribute to better understanding of the physical processes behind the optical control of magnetism in thin films, with the goal of optimizing material parameters and methods for their potential use in next generation memory and logic devices. First part of the thesis is dedicated to investigation of all-optical helicity-dependent switching (AO-HDS) as a method for magnetization manipulation. AO-HDS in Co/Pt multilayer and CoFeB alloys with and without the presence of Dzyaloshinskii-Moriya interaction (DMI), which is a type of exchange interaction, have been investigated by magnetic imaging using photo-emission electron microscopy (PEEM) in combination with X-ray magnetic circular dichroism (XMCD). The results show that in a narrow range of the laser fluence, circularly polarized laser light induces a drag on domain walls. This enables a local deterministic transformation of the magnetic domain pattern from stripes to bubbles in out-of-plane magnetized Co/Pt multilayers, only controlled by the helicity of ultrashort laser pulses. The temperature and characteristic fields at which the stripe-bubble transformation occurs has been calculated using theory for isolated magnetic bubbles, using as parameters experimentally determined average size of stripe domains and the magnetic layer thickness. The second part of the work aims at purely optical formation and annihilation of magnetic skyrmions by a single laser pulse. The presence of a skyrmion phase in the investigated CoFeB alloys was first confirmed using a Kerr microscope. Then the helicity-dependent skyrmion manipulation was studied using AO-HDS at different laser fluences. It was found that formation or annihilation individual skyrmions using AO-HDS is possible, but not always reliable, as fluctuations in the laser fluence or position can easily overwrite the helicity-dependent effect of AO-HDS. However, the experimental results and magnetic simulations showed that the threshold values for the laser fluence for the formation and annihilation of skyrmions are different. A higher fluence is required for skyrmion formation, and existing skyrmions can be annihilated by pulses with a slightly lower fluence. This provides a further option for controlling formation and annihilation of skyrmions using the laser fluence. Micromagnetic simulations provide additional insights into the formation and annihilation mechanism. The ability to manipulate the magnetic state of individual skyrmions is of fundamental importance for magnetic data storage technologies. Our results show for the first time that the optical formation and annihilation of skyrmions is possible without changing the external field. These results enable further investigations to optimise the magnetic layer to maximise the energy gap between the formation and annihilation barrier. As a result, unwanted switching due to small laser fluctuations can be avoided and fully deterministic optical switching can be achieved. N2 - Laser induziertes Schalten bietet eine attraktive Möglichkeit zur Manipulation kleiner magnetischer Domänen für zukünftige Speicher- und Logikbauteile auf ultrakurzen Zeitskalen. Darüber hinaus ermöglicht die rein optische Kontrolle der Magnetisierung ohne hohe angelegte Magnetfelder eine individuelle und lokale Manipulation magnetischer Domänen ohne teure Wärmeverluste. Eine der größten Herausforderungen bei der Entwicklung neuartiger optisch kontrollierter magnetischer Speicher- und Logikbauteile ist das zuverlässige Schreiben stabiler magnetischer Domänen, die unter Umgebungsbedingungen als Speicherbits dienen können. Magnetische Skyrmionen, topologisch nichttriviale wirbelf¨ormige Spin-Texturen, wurden seit ihrer Entdeckung aufgrund ihrer Stabilität und Skalierbarkeit in potenziellen spintronischen Bauelementen intensiv untersucht. Allerdings sind die Prozesse der Skyrmionenbildung und vor allem der Skyrmionenvernichtung noch immer nicht vollständig verstanden, so dass weitere Untersuchungen zu diesen Mechanismen erforderlich sind. Ziel dieser Arbeit ist es, zu einem besseren Verständnis der physikalischen Prozesse beizutragen, die der optischen Kontrolle magnetischer Texturen in dünnen Filmen zugrunde liegen, mit dem Ziel, die Materialparameter und Methoden für ihren potenziellen Einsatz in Speicher- und Logikbauteilen der nächsten Generation zu optimieren. Der erste Teil der Arbeit widmet sich der Untersuchung des rein optischen helizitätsabhängigen Schaltens (AO-HDS) als Methode zur Manipulation der Magnetisierung. AO-HDS wurde in Co/Pt-Multilayern und CoFeB-Legierungen mit und ohne DMI (Dzyaloshinskii-Moriya-Wechselwirkung), einer Art Austauschwechselwirkung, mittels magnetischer Bildgebung durch Photoemissions-Elektronenmikroskopie (PEEM) in Kombination mit magnetischem Röntgendichroismus (XMCD) untersucht. Die Ergebnisse zeigen, dass zirkular polarisiertes Licht in einem bestimmten Bereich der Laserfluenz einen Zug auf Domänenwände ausübt. Dies ermöglicht eine lokale deterministische Umwandlung des magnetischen Domänenmusters von Streifen zu Blasen Domänen in unmagnetisierten Co/Pt- Multilagen, die ausschließlich durch die Helizität der ultrakurzen Laserpulse gesteuert wird. Die Temperatur und die charakteristischen Felder, bei denen die Umwandlung von Streifen zu Blasen Domänen stattfindet, wurden mithilfe der Theorie für isolierte magnetische Blasen berechnet, wobei die experimentell ermittelte durchschnittliche Größe der Streifendom¨anen und die Dicke der magnetischen Schicht als Parameter verwendet wurden. Der zweite Teil der Arbeit zielt darauf ab, optimale Parameter zu ermitteln, die für das rein optische Schreiben und Löschen von magnetischen Skyrmionen in einem einzigen Laser Puls erforderlich sind. Das Vorhandensein einer Skyrmion-Phase in dafür verwendeten CoFeB-Legierungen wurde zunächst mit Hilfe eines Kerr-Mikroskops bestätigt. Dann wurde die helizitätsabhängige Skyrmion-Manipulation mittels AOHDS für verschiedene Laserfluenzen untersucht. Es zeigte sich, dass eine Schreiben oder Löschen einzelner Skyrmionen mittels AO-HDS zwar möglich ist, aber nicht immer zuverlässig, da Fluktuationen in der Laserfluenz oder Position den helizitätsabhängigen Effekt von AO-HDS leicht überschreiben können. Die experimentellen Ergebnisse und magnetischen Simulationen zeigten allerdings, dass die Schwellenwerte für die Laserfluenz zur Bildung und Vernichtung von Skyrmionen unterschiedlich sind. Für die Skyrmionenbildung wird eine höhere Fluenz benötigt, und bereits existierende Skyrmionen können durch Laser Pulse mit etwas geringerer Fluenz gelöscht werden. Dadurch bietet sich eine weitere Möglichkeit das Schreiben und Löschen von Skyrmionen durch die Laserfluenz zu kontrollieren. Mikromagnetische Simulationen liefern zusätzliche Erkenntnisse über den Schreib- und Löschmechanismus. Die Möglichkeit, den magnetischen Zustand einzelner Skyrmionen zu manipulieren, ist von grundlegender Bedeutung für magnetische Datenspeichertechnologien. Unsere Ergebnisse zeigen erstmalig, dass die optische Bildung und Vernichtung von Skyrmionen ohne Änderung des externen Feldes möglich ist. Diese Ergebnisse ermöglichen weitere Untersuchungen zur Optimierung der magnetischen Schicht, um die Energielücke zwischen Bildungs- und Vernichtungsbarriere zu maximieren. Dadurch kann unerwünschtes Schalten aufgrund kleiner Laserfluktuationen vermieden und vollständig deterministisches optisches Schalten erreicht werden. KW - Skyrmions KW - bubble domains KW - magnetism KW - Skyrmionen KW - Blasendomänen KW - Magnetismus KW - dünne Schichten KW - thin films Y1 - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-647069 ER -