TY - JOUR A1 - Breitenstein, Michael A1 - Nielsen, Peter E. A1 - Hölzel, Ralph A1 - Bier, Frank Fabian T1 - DNA-nanostructure-assembly by sequential spotting JF - Journal of nanobiotechnology N2 - Background: The ability to create nanostructures with biomolecules is one of the key elements in nanobiotechnology. One of the problems is the expensive and mostly custom made equipment which is needed for their development. We intended to reduce material costs and aimed at miniaturization of the necessary tools that are essential for nanofabrication. Thus we combined the capabilities of molecular ink lithography with DNA-self-assembling capabilities to arrange DNA in an independent array which allows addressing molecules in nanoscale dimensions. Results: For the construction of DNA based nanostructures a method is presented that allows an arrangement of DNA strands in such a way that they can form a grid that only depends on the spotted pattern of the anchor molecules. An atomic force microscope (AFM) has been used for molecular ink lithography to generate small spots. The sequential spotting process allows the immobilization of several different functional biomolecules with a single AFM-tip. This grid which delivers specific addresses for the prepared DNA-strand serves as a two-dimensional anchor to arrange the sequence according to the pattern. Once the DNA-nanoarray has been formed, it can be functionalized by PNA (peptide nucleic acid) to incorporate advanced structures. Conclusions: The production of DNA-nanoarrays is a promising task for nanobiotechnology. The described method allows convenient and low cost preparation of nanoarrays. PNA can be used for complex functionalization purposes as well as a structural element. Y1 - 2011 U6 - https://doi.org/10.1186/1477-3155-9-54 SN - 1477-3155 VL - 9 IS - 11 PB - BioMed Central CY - London ER - TY - GEN A1 - Breitenstein, Michael A1 - Nielsen, Peter E. A1 - Hölzel, Ralph A1 - Bier, Frank Fabian T1 - DNA-nanostructure-assembly by sequential spotting T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background: The ability to create nanostructures with biomolecules is one of the key elements in nanobiotechnology. One of the problems is the expensive and mostly custom made equipment which is needed for their development. We intended to reduce material costs and aimed at miniaturization of the necessary tools that are essential for nanofabrication. Thus we combined the capabilities of molecular ink lithography with DNA-self-assembling capabilities to arrange DNA in an independent array which allows addressing molecules in nanoscale dimensions. Results: For the construction of DNA based nanostructures a method is presented that allows an arrangement of DNA strands in such a way that they can form a grid that only depends on the spotted pattern of the anchor molecules. An atomic force microscope (AFM) has been used for molecular ink lithography to generate small spots. The sequential spotting process allows the immobilization of several different functional biomolecules with a single AFM-tip. This grid which delivers specific addresses for the prepared DNA-strand serves as a two-dimensional anchor to arrange the sequence according to the pattern. Once the DNA-nanoarray has been formed, it can be functionalized by PNA (peptide nucleic acid) to incorporate advanced structures. Conclusions: The production of DNA-nanoarrays is a promising task for nanobiotechnology. The described method allows convenient and low cost preparation of nanoarrays. PNA can be used for complex functionalization purposes as well as a structural element. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1027 KW - atomic force microscope KW - peptide nucleic acid KW - persistence length KW - adapter oligonucleotide KW - high fluorescence signal Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431108 SN - 1866-8372 IS - 1027 ER - TY - JOUR A1 - Glud, Ronnie N. A1 - Grossart, Hans-Peter A1 - Larsen, Morten A1 - Tang, Kam W. A1 - Arendt, Kristine E. A1 - Rysgaard, Soren A1 - Thamdrup, Bo A1 - Gissel Nielsen, Torkel T1 - Copepod carcasses as microbial hot spots for pelagic denitrification JF - Limnology and oceanography N2 - Copepods are exposed to a high non-predatory mortality and their decomposing carcasses act as microniches with intensified microbial activity. Sinking carcasses could thereby represent anoxic microenvironment sustaining anaerobic microbial pathways in otherwise oxic water columns. Using non-invasive O-2 imaging, we document that carcasses of Calanus finmarchicus had an anoxic interior even at fully air-saturated ambient O-2 level. The extent of anoxia gradually expanded with decreasing ambient O-2 levels. Concurrent microbial sampling showed the expression of nitrite reductase genes (nirS) in all investigated carcass samples and thereby documented the potential for microbial denitrification in carcasses. The nirS gene was occasionally expressed in live copepods, but not as consistently as in carcasses. Incubations of sinking carcasses in (15)NO3-amended seawater demonstrated denitrification, of which on average 34%+/- 17% (n=28) was sustained by nitrification. However, the activity was highly variable and was strongly dependent on the ambient O-2 levels. While denitrification was present even at air-saturation (302 mol L-1), the average carcass specific activity increased several orders of magnitude to approximate to 1 nmol d(-1) at 20% air-saturation (55 mol O-2 L-1) at an ambient temperature of 7 degrees C. Sinking carcasses of C. finmarchicus therefore represent hotspots of pelagic denitrification, but the quantitative importance as a sink for bioavailable nitrogen is strongly dependent on the ambient O-2 level. The importance of carcass associated denitrification could be highly significant in O-2 depleted environments such as Oxygen Minimum Zones (OMZ). Y1 - 2015 U6 - https://doi.org/10.1002/lno.10149 SN - 0024-3590 SN - 1939-5590 VL - 60 IS - 6 SP - 2026 EP - 2036 PB - Wiley-Blackwell CY - Hoboken ER -