TY - JOUR A1 - Bussas, Matthias A1 - Sawade, Christoph A1 - Kuhn, Nicolas A1 - Scheffer, Tobias A1 - Landwehr, Niels T1 - Varying-coefficient models for geospatial transfer learning JF - Machine learning N2 - We study prediction problems in which the conditional distribution of the output given the input varies as a function of task variables which, in our applications, represent space and time. In varying-coefficient models, the coefficients of this conditional are allowed to change smoothly in space and time; the strength of the correlations between neighboring points is determined by the data. This is achieved by placing a Gaussian process (GP) prior on the coefficients. Bayesian inference in varying-coefficient models is generally intractable. We show that with an isotropic GP prior, inference in varying-coefficient models resolves to standard inference for a GP that can be solved efficiently. MAP inference in this model resolves to multitask learning using task and instance kernels. We clarify the relationship between varying-coefficient models and the hierarchical Bayesian multitask model and show that inference for hierarchical Bayesian multitask models can be carried out efficiently using graph-Laplacian kernels. We explore the model empirically for the problems of predicting rent and real-estate prices, and predicting the ground motion during seismic events. We find that varying-coefficient models with GP priors excel at predicting rents and real-estate prices. The ground-motion model predicts seismic hazards in the State of California more accurately than the previous state of the art. KW - Transfer learning KW - Varying-coefficient models KW - Housing-price prediction KW - Seismic-hazard models Y1 - 2017 U6 - https://doi.org/10.1007/s10994-017-5639-3 SN - 0885-6125 SN - 1573-0565 VL - 106 SP - 1419 EP - 1440 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Sawade, Christoph A1 - Bickel, Steffen A1 - von Oertzen, Timo A1 - Scheffer, Tobias A1 - Landwehr, Niels T1 - Active evaluation of ranking functions based on graded relevance JF - Machine learning N2 - Evaluating the quality of ranking functions is a core task in web search and other information retrieval domains. Because query distributions and item relevance change over time, ranking models often cannot be evaluated accurately on held-out training data. Instead, considerable effort is spent on manually labeling the relevance of query results for test queries in order to track ranking performance. We address the problem of estimating ranking performance as accurately as possible on a fixed labeling budget. Estimates are based on a set of most informative test queries selected by an active sampling distribution. Query labeling costs depend on the number of result items as well as item-specific attributes such as document length. We derive cost-optimal sampling distributions for the commonly used performance measures Discounted Cumulative Gain and Expected Reciprocal Rank. Experiments on web search engine data illustrate significant reductions in labeling costs. KW - Information retrieval KW - Ranking KW - Active evaluation Y1 - 2013 U6 - https://doi.org/10.1007/s10994-013-5372-5 SN - 0885-6125 VL - 92 IS - 1 SP - 41 EP - 64 PB - Springer CY - Dordrecht ER -