TY - JOUR A1 - Huck, Stefan A1 - Stein, Melody A1 - Immenhauser, Adrian A1 - Skelton, Peter W. A1 - Christ, Nicolas A1 - Foellmi, Karl B. A1 - Heimhofer, Ulrich T1 - Response of proto-North Atlantic carbonate-platform ecosystems to OAE1a-related stressors JF - Sedimentary geology : international journal of applied and regional sedimentology N2 - Integrated biostratigraphic-chemostratigraphic studies provide evidence that the proto-North Atlantic realm witnessed major changes in carbonate platform production in the run-up of the Early Aptian oceanic anoxic event (OAE) 1a. Whereas pervasive growth of Lithocodium microencrusters represents an early harbinger of OAE1a-related environmental perturbation, the subsequent replacement of oligotrophic rudist-coral-nerineid by mesotrophic orbitolinid-oyster communities was clearly associated with the event itself. In order to test the supra-regional relevance of this major community replacement, two shallow-water sections in the southern Lusitanian Basin (Portugal) are investigated by means of geochemistry (carbon and oxygen isotopes), cement petrography and detailed sedimentological analysis. The focus is on a regional, prominent discontinuity surface (S4) at the transition between oligotrophic and mesotrophic carbonate platform production, which might indicate that the major biotic change could have been associated with a phase of non-sedimentation and possibly erosion. The studied sections (Sao Julia, Crismina) provide evidence that the major Early Aptian biotic turnover was preceded by numerous subordinate but significant changes in platform ecology, which mirrored a series of progressive short-term environmental changes in the course of OAE1. Several transient mass occurrences of orbitolinids indicate repeated phases of ecological stress arguably due to enhanced nutrient input and deepening. Small-scale sea-level changes at parasequence level below the major discontinuity surface are revealed by alternations of rudist assemblages dominated by clinger or recumbent forms as well as intercalated hardground and subaerial exposure stages. Expanded phases of subaerial exposure, however, can be largely ruled out following the geochemical and cement-petrographic data presented here. Enhanced continent-derived siliciclastic input characterising the lower orbitolinid-oyster dominated limestones is in support of a shift to more humid conditions during the middle Early Aptian. This is in line with palaeoclimatic data, which propose a southward movement of the mid-latitude arid climate belt during this time. The documented rapid replacement of oligotrophic assemblages by various environmental-stress adapted carbonate platform communities might be seen as explanation for ongoing Early Aptian proto-North Atlantic carbonate production during a time of widespread platform demise and drowning in the northern Tethyan realm. (C) 2014 Elsevier B.V. All rights reserved. KW - Aptian KW - Oceanic anoxic event 1a KW - Proto-North Atlantic KW - Discontinuity surfaces KW - Carbonate platform response KW - Carbon and oxygen isotopes Y1 - 2014 U6 - https://doi.org/10.1016/j.sedgeo.2014.08.003 SN - 0037-0738 SN - 1879-0968 VL - 313 SP - 15 EP - 31 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Agada, S. A1 - Chen, F. A1 - Geiger, S. A1 - Toigulova, G. A1 - Agar, Susan M. A1 - Shekhar, R. A1 - Benson, Gregory S. A1 - Hehmeyer, O. A1 - Amour, Frédéric A1 - Mutti, Maria A1 - Christ, Nicolas A1 - Immenhauser, A. T1 - Numerical simulation of fluid-flow processes in a 3D high-resolution carbonate reservoir analogue JF - Petroleum geoscience N2 - A high-resolution three-dimensional (3D) outcrop model of a Jurassic carbonate ramp was used in order to perform a series of detailed and systematic flow simulations. The aim of this study was to test the impact of small- and large-scale geological features on reservoir performance and oil recovery. The digital outcrop model contains a wide range of sedimentological, diagenetic and structural features, including discontinuity surfaces, shoal bodies, mud mounds, oyster bioherms and fractures. Flow simulations are performed for numerical well testing and secondary oil recovery. Numerical well testing enables synthetic but systematic pressure responses to be generated for different geological features observed in the outcrops. This allows us to assess and rank the relative impact of specific geological features on reservoir performance. The outcome documents that, owing to the realistic representation of matrix heterogeneity, most diagenetic and structural features cannot be linked to a unique pressure signature. Instead, reservoir performance is controlled by subseismic faults and oyster bioherms acting as thief zones. Numerical simulations of secondary recovery processes reveal strong channelling of fluid flow into high-permeability layers as the primary control for oil recovery. However, appropriate reservoir-engineering solutions, such as optimizing well placement and injection fluid, can reduce channelling and increase oil recovery. Y1 - 2014 U6 - https://doi.org/10.1144/petgeo2012-096 SN - 1354-0793 VL - 20 IS - 1 SP - 125 EP - 142 PB - Geological Soc. Publ. House CY - Bath ER - TY - JOUR A1 - Shekhar, R. A1 - Sahni, I. A1 - Benson, Gregory S. A1 - Agar, Susan M. A1 - Amour, Frédéric A1 - Tomas, Sara A1 - Christ, Nicolas A1 - Alway, Robert A1 - Mutti, Maria A1 - Immenhauser, A. A1 - Karcz, Z. A1 - Kabiri, L. T1 - Modelling and simulation of a Jurassic carbonate ramp outcrop, Amellago, High Atlas Mountains, Morocco JF - Petroleum geoscience N2 - Carbonate reservoirs pose significant challenges for reservoir modelling and flow prediction due to heterogeneities in rock properties, limits to seismic resolution and limited constraints on subsurface data. Hence, a systematic and streamlined approach is needed to construct geological models and to quickly evaluate key sensitivities in the flow models. This paper discusses results from a reservoir analogue study of a Middle Jurassic carbonate ramp in the High Atlas Mountains of Morocco that has stratigraphic and structural similarities to selected Middle East reservoirs. For this purpose, high-resolution geological models were constructed from the integration of sedimentological, diagenetic and structural studies in the area. The models are approximately 1200 x 1250 m in size, and only faults (no fractures) with offsets greater than 1 m are included. Novel methods have been applied to test the response of flow simulations to the presence or absence of specific geological features, including proxies for hardgrounds, stylolites, patch reefs, and mollusc banks, as a way to guide the level of detail that is suitable for modelling objectives. Our general conclusion from the study is that the continuity of any geological feature with extreme permeability (high or low) has the most significant impact on flow. Y1 - 2014 U6 - https://doi.org/10.1144/petgeo2013-010 SN - 1354-0793 VL - 20 IS - 1 SP - 109 EP - 123 PB - Geological Soc. Publ. House CY - Bath ER -