TY - JOUR A1 - Nezhadhaghighi, M. Ghasemi A1 - Rajabpour, M. A. T1 - Quantum entanglement entropy and classical mutual information in long-range harmonic oscillators JF - Physical review : B, Condensed matter and materials physics N2 - We study different aspects of quantum von Neumann and Renyi entanglement entropy of one-dimensional long-range harmonic oscillators that can be described by well-defined nonlocal field theories. We show that the entanglement entropy of one interval with respect to the rest changes logarithmically with the number of oscillators inside the subsystem. This is true also in the presence of different boundary conditions. We show that the coefficients of the logarithms coming from different boundary conditions can be reduced to just two different universal coefficients. We also study the effect of the mass and temperature on the entanglement entropy of the system in different situations. The universality of our results is also confirmed by changing different parameters in the coupled harmonic oscillators. We also show that more general interactions coming from general singular Toeplitz matrices can be decomposed to our long-range harmonic oscillators. Despite the long-range nature of the couplings, we show that the area law is valid in two dimensions and the universal logarithmic terms appear if we consider subregions with sharp corners. Finally, we study analytically different aspects of the mutual information such as its logarithmic dependence to the subsystem, effect of mass, and influence of the boundary. We also generalize our results in this case to general singular Toeplitz matrices and higher dimensions. Y1 - 2013 U6 - https://doi.org/10.1103/PhysRevB.88.045426 SN - 1098-0121 SN - 1550-235X VL - 88 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Nezhadhaghighi, M. Ghasemi A1 - Chechkin, Aleksei V. A1 - Metzler, Ralf T1 - Numerical approach to unbiased and driven generalized elastic model JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - From scaling arguments and numerical simulations, we investigate the properties of the generalized elastic model (GEM) that is used to describe various physical systems such as polymers, membranes, single-file systems, or rough interfaces. We compare analytical and numerical results for the subdiffusion exponent beta characterizing the growth of the mean squared displacement <(delta h)(2)> of the field h described by the GEM dynamic equation. We study the scaling properties of the qth order moments with time, finding that the interface fluctuations show no intermittent behavior. We also investigate the ergodic properties of the process h in terms of the ergodicity breaking parameter and the distribution of the time averaged mean squared displacement. Finally, we study numerically the driven GEM with a constant, localized perturbation and extract the characteristics of the average drift for a tagged probe. Y1 - 2014 U6 - https://doi.org/10.1063/1.4858425 SN - 0021-9606 SN - 1089-7690 VL - 140 IS - 2 PB - American Institute of Physics CY - Melville ER -