TY - GEN A1 - Frieler, Katja A1 - Levermann, Anders A1 - Elliott, J. A1 - Heinke, J. A1 - Arneth, A. A1 - Bierkens, M. F. P. A1 - Ciais, Philippe A1 - Clark, D. B. A1 - Deryng, D. A1 - Doell, P. A1 - Falloon, P. A1 - Fekete, B. A1 - Folberth, Christian A1 - Friend, A. D. A1 - Gellhorn, C. A1 - Gosling, S. N. A1 - Haddeland, I. A1 - Khabarov, N. A1 - Lomas, M. A1 - Masaki, Y. A1 - Nishina, K. A1 - Neumann, K. A1 - Oki, T. A1 - Pavlick, R. A1 - Ruane, A. C. A1 - Schmid, E. A1 - Schmitz, C. A1 - Stacke, T. A1 - Stehfest, E. A1 - Tang, Q. A1 - Wisser, D. A1 - Huber, V. A1 - Piontek, Franziska A1 - Warszawski, L. A1 - Schewe, Jacob A1 - Lotze-Campen, Hermann A1 - Schellnhuber, Hans Joachim T1 - A framework for the cross-sectoral integration of multi-model impact projections BT - land use decisions under climate impacts uncertainties T2 - Earth system dynamics N2 - Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop-and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 457 KW - global food demand KW - water availability KW - elevated CO2 KW - future KW - carbon KW - system KW - productivity KW - agriculture KW - emissions KW - scarcity Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407968 ER - TY - JOUR A1 - Frieler, Katja A1 - Levermann, Anders A1 - Elliott, J. A1 - Heinke, Jens A1 - Arneth, A. A1 - Bierkens, M. F. P. A1 - Ciais, Philippe A1 - Clark, D. B. A1 - Deryng, D. A1 - Doell, P. A1 - Falloon, P. A1 - Fekete, B. A1 - Folberth, Christian A1 - Friend, A. D. A1 - Gellhorn, C. A1 - Gosling, S. N. A1 - Haddeland, I. A1 - Khabarov, N. A1 - Lomas, M. A1 - Masaki, Y. A1 - Nishina, K. A1 - Neumann, K. A1 - Oki, T. A1 - Pavlick, R. A1 - Ruane, A. C. A1 - Schmid, E. A1 - Schmitz, C. A1 - Stacke, T. A1 - Stehfest, E. A1 - Tang, Q. A1 - Wisser, D. A1 - Huber, Veronika A1 - Piontek, Franziska A1 - Warszawski, Lila A1 - Schewe, Jacob A1 - Lotze-Campen, Hermann A1 - Schellnhuber, Hans Joachim T1 - A framework for the cross-sectoral integration of multi-model impact projections BT - land use decisions under climate impacts uncertainties JF - Earth system dynamics N2 - Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop-and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making. Y1 - 2015 U6 - https://doi.org/10.5194/esd-6-447-2015 SN - 2190-4979 SN - 2190-4987 VL - 6 IS - 2 SP - 447 EP - 460 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Christensen, B. J. A1 - Lentz, R. A1 - Mortensen, D. T. A1 - Neumann, G. R. A1 - Werwatz, A. T1 - On-the-job search and the wage distribution N2 - The article structually estimates an on-the-job search model of job separations. Given each employer pays observably equivalent workers the same but wages are dispersed across employers, an employer's separation flow is the sum of an exogenous outflow unrelated to the wage and a job-to-job flow that decreases with the employer's wage. Using data from the Danish Integrated Database for Labour Market Research, the empirical results imply, as predicted by theory, that search effort declines with the wage. Furthermore, the estimates explain the employment effect, defined as the horizontal difference between the distribution of wages earned and the wage offer distribution Y1 - 2005 SN - 0734-306X ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Bier, Frank Fabian A1 - Neumann, B. T1 - Bioindikation in aquatischen Ökosystemen : Bioindikation in limnischen und küstennahen Ökosystemen ; Grundlagen, Verfahren und Methoden Y1 - 1994 PB - Fischer CY - Jena ER - TY - JOUR A1 - Welzel, H.-P. A1 - Kossmehl, G. A1 - Engelmann, G. A1 - Neumann, B. A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. T1 - Electrochemical polymerization of functionalized thiohene derivatives for immobilization of proteins Y1 - 1997 ER - TY - JOUR A1 - Wollenberger, Ursula A1 - Neumann, B. T1 - Quinoprotein glucose dehydrogenase modified carbon paste electrode for detection of phenolic compounds Y1 - 1997 ER - TY - JOUR A1 - Riedel, K. A1 - Beyersdorf-Radeck, Baerbel A1 - Neumann, B. A1 - Scheller, Frieder W. A1 - Schmid, Rolf D. T1 - Microbial sensors for determination of aromatics and their chloro derivatives. Part III: Determination of chlorinated phenols using a biosensor containing Trichosporon beigelii (cutaneum) Y1 - 1995 ER - TY - JOUR A1 - Wollenberger, Ursula A1 - Neumann, B. A1 - Scheller, Frieder W. T1 - Development of a biomimetic alkane sensor f Y1 - 1998 ER - TY - JOUR A1 - Wollenberger, Ursula A1 - Neumann, B. A1 - Riedel, K. A1 - Scheller, Frieder W. T1 - Enzyme and microbial sensors for phosphate, phenols, pesticides and peroxides Y1 - 1994 ER - TY - JOUR A1 - Welzel, H.-P. A1 - Kossmehl, G. A1 - Engelmann, G. A1 - Neumann, B. A1 - Wollenberger, Ursula A1 - Scheller, Frieder W. A1 - Schröder, W. T1 - Reactive groups on polymer covered electrodes, 4. Lactate-oxidase-biosensor based on electrodes modifies by polyphiophene Y1 - 1996 ER -