TY - JOUR A1 - Wessel, Niels A1 - Konvicka, Jan A1 - Weidermann, Frank A1 - Nestmann, S. A1 - Neugebauer, R. A1 - Schwarz, U. A1 - Wessel, A. A1 - Kurths, Jürgen T1 - Predicting thermal displacements in modular tool systems N2 - In the last decade, there has been an increasing interest in compensating thermally induced errors to improve the manufacturing accuracy of modular tool systems. These modular tool systems are interfaces between spindle and workpiece and consist of several complicatedly formed parts. Their thermal behavior is dominated by nonlinearities, delay and hysteresis effects even in tools with simpler geometry and it is difficult to describe it theoretically. Due to the dominant nonlinear nature of this behavior the so far used linear regression between the temperatures and the displacements is insufficient. Therefore, in this study we test the hypothesis whether we can reliably predict such thermal displacements via nonlinear temperature-displacement regression functions. These functions are estimated firstly from learning measurements using the alternating conditional expectation (ACE) algorithm and then tested on independent data sets. First, we analyze data that were generated by a finite element spindle model. We find that our approach is a powerful tool to describe the relation between temperatures and displacements for simulated data. Next, we analyze the temperature-displacement relationship in a silent real experimental setup, where the tool system is thermally forced. Again, the ACE-algorithm is powerful to estimate the deformation with high precision. The corresponding errors obtained by using the nonlinear regression approach are 10-fold lower in comparison to multiple linear regression analysis. Finally, we investigate the thermal behavior of a modular tool system in a working milling machine and get again promising results. The thermally inducedaccuracy using this nonlinear regression analysis. Therefore, this approach seems to be very useful for the development of new modular tool systems. errors can be estimated with 1-2 micrometer Y1 - 2004 SN - 1054-1500 ER - TY - JOUR A1 - Wessel, Niels A1 - Aßmus, Joerg A1 - Weidermann, Frank A1 - Konvicka, Jan A1 - Nestmann, S. A1 - Neugebauer, R. A1 - Schwarz, Udo A1 - Kurths, Jürgen T1 - Modeling thermal displacements in modular tool systems N2 - In the last decade, there has been an increasing interest in compensating thermally induced errors to improve the manufacturing accuracy of modular tool systems. These modular tool systems are interfaces between spindle and workpiece and consist of several complicatedly formed parts. Their thermal behavior is dominated by nonlinearities, delay and hysteresis effects even in tools with simpler geometry and it is difficult to describe it theoretically. Due to the dominant nonlinear nature of this behavior the so far used linear regression between the temperatures and the displacements is insufficient. Therefore, in this study we test the hypothesis whether we can reliably predict such thermal displacements via nonlinear temperature-displacement regression functions. These functions are estimated firstly from learning measurements using the alternating conditional expectation (ACE) algorithm and then tested on independent data sets. First, we analyze data that were generated by a finite element spindle model. We find that our approach is a powerful tool to describe the relation between temperatures and displacements for simulated data. Next, we analyze the temperature-displacement relationship in a silent real experimental setup, where the tool system is thermally forced. Again, the ACE-algorithm is powerful to estimate the deformation with high precision. The corresponding errors obtained by using the nonlinear regression approach are 10-fold lower in comparison to multiple linear regression analysis. Finally, we investigate the thermal behavior of a modular tool system in a working milling machine and get again promising results. The thermally induced errors can be estimated with 1-2${mu m}$ accuracy using this nonlinear regression analysis. Therefore, this approach seems to be very useful for the development of new modular tool systems. Y1 - 2004 ER - TY - GEN A1 - Neugebauer, Ina A1 - Schwab, M. J. A1 - Waldmann, Nicolas D. A1 - Tjallingii, Rik A1 - Frank, U. A1 - Hadzhiivanova, E. A1 - Naumann, R. A1 - Taha, N. A1 - Agnon, Amotz A1 - Enzel, Y. A1 - Brauer, Achim T1 - Hydroclimatic variability in the Levant during the early last glacial (similar to 117-75 ka) derived from micro-facies analyses of deep Dead Sea sediments T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by micro-X-ray fluorescence (mu XRF) scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca. 117 to 75 ka, i. e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several metres thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at similar to 110-108 +/- 5 and similar to 93-87 +/- 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during Marine Isotope Stage (MIS) 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in situ beach deposit. Two intervals of higher lake stands at similar to 108-93 +/- 6 and similar to 87-75 +/- 7 ka correspond to interstadial conditions in the central Mediterranean, i. e. pollen zones St. Germain I and II in Monticchio, and Greenland interstadials (GI) 24+23 and 21 in Greenland, as well as to sapropels S4 and S3 in the Mediterranean Sea. These apparent correlations suggest a close link of the climate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields in the early last glacial period. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 549 KW - Lake Lisan KW - Middle-east KW - ice-sheet KW - hydrological condition KW - climate variability KW - tropical plumes KW - Winter rainfall KW - Southern Levant KW - soreq cave KW - Near-east Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-411879 SN - 1866-8372 IS - 549 ER - TY - JOUR A1 - Neugebauer, I. A1 - Schwab, M. J. A1 - Waldmann, N. D. A1 - Tjallingii, Rik A1 - Frank, U. A1 - Hadzhiivanova, E. A1 - Naumann, R. A1 - Taha, N. A1 - Agnon, A. A1 - Enzel, Y. A1 - Brauer, Achim T1 - Hydroclimatic variability in the Levant during the early last glacial (similar to 117-75 ka) derived from micro-facies analyses of deep Dead Sea sediments JF - Climate of the past : an interactive open access journal of the European Geosciences Union N2 - The new sediment record from the deep Dead Sea basin (ICDP core 5017-1) provides a unique archive for hydroclimatic variability in the Levant. Here, we present high-resolution sediment facies analysis and elemental composition by micro-X-ray fluorescence (mu XRF) scanning of core 5017-1 to trace lake levels and responses of the regional hydroclimatology during the time interval from ca. 117 to 75 ka, i. e. the transition between the last interglacial and the onset of the last glaciation. We distinguished six major micro-facies types and interpreted these and their alterations in the core in terms of relative lake level changes. The two end-member facies for highest and lowest lake levels are (a) up to several metres thick, greenish sediments of alternating aragonite and detrital marl laminae (aad) and (b) thick halite facies, respectively. Intermediate lake levels are characterised by detrital marls with varying amounts of aragonite, gypsum or halite, reflecting lower-amplitude, shorter-term variability. Two intervals of pronounced lake level drops occurred at similar to 110-108 +/- 5 and similar to 93-87 +/- 7 ka. They likely coincide with stadial conditions in the central Mediterranean (Melisey I and II pollen zones in Monticchio) and low global sea levels during Marine Isotope Stage (MIS) 5d and 5b. However, our data do not support the current hypothesis of an almost complete desiccation of the Dead Sea during the earlier of these lake level low stands based on a recovered gravel layer. Based on new petrographic analyses, we propose that, although it was a low stand, this well-sorted gravel layer may be a vestige of a thick turbidite that has been washed out during drilling rather than an in situ beach deposit. Two intervals of higher lake stands at similar to 108-93 +/- 6 and similar to 87-75 +/- 7 ka correspond to interstadial conditions in the central Mediterranean, i. e. pollen zones St. Germain I and II in Monticchio, and Greenland interstadials (GI) 24+23 and 21 in Greenland, as well as to sapropels S4 and S3 in the Mediterranean Sea. These apparent correlations suggest a close link of the climate in the Levant to North Atlantic and Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields in the early last glacial period. Y1 - 2016 U6 - https://doi.org/10.5194/cp-12-75-2016 SN - 1814-9324 SN - 1814-9332 VL - 12 SP - 75 EP - 90 PB - Copernicus CY - Göttingen ER -