TY - JOUR A1 - Hwang, Jongkook A1 - Walczak, Ralf A1 - Oschatz, Martin A1 - Tarakina, Nadezda A1 - Schmidt, Bernhard V. K. J. T1 - Micro-Blooming: Hierarchically Porous Nitrogen-Doped Carbon Flowers Derived from Metal-Organic Mesocrystals JF - Small N2 - Synthesis of 3D flower-like zinc-nitrilotriacetic acid (ZnNTA) mesocrystals and their conformal transformation to hierarchically porous N-doped carbon superstructures is reported. During the solvothermal reaction, 2D nanosheet primary building blocks undergo oriented attachment and mesoscale assembly forming stacked layers. The secondary nucleation and growth preferentially occurs at the edges and defects of the layers, leading to formation of 3D flower-like mesocrystals comprised of interconnected 2D micropetals. By simply varying the pyrolysis temperature (550-1000 degrees C) and the removal method of in the situ-generated Zn species, nonporous parent mesocrystals are transformed to hierarchically porous carbon flowers with controllable surface area (970-1605 m(2) g(-1)), nitrogen content (3.4-14.1 at%), pore volume (0.95-2.19 cm(3) g(-1)), as well as pore diameter and structures. The carbon flowers prepared at 550 degrees C show high CO2/N-2 selectivity due to the high nitrogen content and the large fraction of (ultra)micropores, which can greatly increase the CO2 affinity. The results show that the physicochemical properties of carbons are highly dependent on the thermal transformation and associated pore formation process, rather than directly inherited from parent precursors. The present strategy demonstrates metal-organic mesocrystals as a facile and versatile means toward 3D hierarchical carbon superstructures that are attractive for a number of potential applications. KW - 3D flower superstructures KW - hierarchically porous carbon KW - metal-organic mesocrystals KW - thermal transformation mechanism Y1 - 2019 U6 - https://doi.org/10.1002/smll.201901986 SN - 1613-6810 SN - 1613-6829 VL - 15 IS - 37 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Walczak, Ralf A1 - Savateev, Aleksandr A1 - Heske, Julian A1 - Tarakina, Nadezda V. A1 - Sahoo, Sudhir A1 - Epping, Jan D. A1 - Kuehne, Thomas D. A1 - Kurpil, Bogdan A1 - Antonietti, Markus A1 - Oschatz, Martin T1 - Controlling the strength of interaction between carbon dioxide and nitrogen-rich carbon materials by molecular design JF - Sustainable energy & fuels N2 - Thermal treatment of hexaazatriphenylene-hexacarbonitrile (HAT-CN) in the temperature range from 500 degrees C to 700 degrees C leads to precise control over the degree of condensation, and thus atomic construction and porosity of the resulting C2N-type materials. Depending on the condensation temperature of HAT-CN, nitrogen contents of more than 30 at% can be reached. In general, these carbons show adsorption properties which are comparable to those known for zeolites but their pore size can be adjusted over a wider range. At condensation temperatures of 525 degrees C and below, the uptake of nitrogen gas remains negligible due to size exclusion, but the internal pores are large and polarizing enough that CO2 can still adsorb on part of the internal surface. This leads to surprisingly high CO2 adsorption capacities and isosteric heat of adsorption of up to 52 kJ mol(-1). Theoretical calculations show that this high binding enthalpy arises from collective stabilization effects from the nitrogen atoms in the C2N layers surrounding the carbon atom in the CO2 molecule and from the electron acceptor properties of the carbon atoms from C2N which are in close proximity to the oxygen atoms in CO2. A true CO2 molecular sieving effect is achieved for the first time in such a metal-free organic material with zeolite-like properties, showing an IAST CO2/N-2 selectivity of up to 121 at 298 K and a N-2/CO2 ratio of 90/10 without notable changes in the CO2 adsorption properities over 80 cycles. Y1 - 2019 U6 - https://doi.org/10.1039/c9se00486f SN - 2398-4902 VL - 3 IS - 10 SP - 2819 EP - 2827 PB - Royal Society of Chemistry CY - Cambridge ER -