TY - JOUR A1 - Vos, Joris A1 - Vuckovic, Maja A1 - Chen, Xuefei A1 - Han, Zhanwen A1 - Boudreaux, Thomas A1 - Barlow, Brad N. A1 - Ostensen, Roy A1 - Németh, Péter T1 - The orbital period-mass ratio relation of wide sdB plus MS binaries and its application to the stability of RLOF JF - Monthly notices of the Royal Astronomical Society N2 - Wide binaries with hot subdwarf-B (sdB) primaries and main sequence companions are thought to form only through stable Roche-lobe overflow (RLOF) of the sdB progenitor near the tip of the red giant branch (RGB). We present the orbital parameters of 11 new long-period composite sdB binaries based on spectroscopic observations obtained with the UVES, FEROS, and CHIRON spectrographs. Using all wide sdB binaries with known orbital parameters, 23 systems, the observed period distribution is found to match very well with theoretical predictions. A second result is the strong correlation between the orbital period (P) and the mass ratio (q) in the observed wide sdB binaries. In the P-q plane two distinct groups emerge, with the main group (18 systems) showing a strong correlation of lower mass ratios at longer orbital periods. The second group comprises systems that are thought to be formed from higher mass progenitors. Based on theoretical models, a correlation between the initial mass ratio at the start of RLOF and core mass of the sdB progenitor is found, which defines a mass-ratio range at which RLOF is stable on the RGB. KW - binaries: spectroscopic KW - stars: evolution KW - stars: fundamental parameters KW - subdwarfs Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty3017 SN - 0035-8711 SN - 1365-2966 VL - 482 IS - 4 SP - 4592 EP - 4605 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Vos, Joris A1 - Vuckovic, Maja A1 - Chen, X. A1 - Han, Zh A1 - Boudreaux, Thomas A1 - Barlow, Brad N. A1 - Ostensen, R. A1 - Nemeth, Péter T1 - Using wide hot subdwarf binaries to constrain Roche-lobe overflow models JF - Contributions of the Astronomical Observatory Skalnaté Pleso N2 - Hot subdwarf B (sdB) stars are evolved core helium burning stars that have lost most of their hydrogen envelope due to binary interaction on the red giant branch. As sdB stars in wide binary systems can only be created by stable Roche lobe overflow, they are a great test sample to constrain the theoretical models for stable mass loss on the red giant branch. We present here the findings of a long term monitoring program of wide sdB+MS binaries. We found two main features in the orbital parameters. The majority of the systems have eccentric orbits with systems on longer orbital period having a higher eccentricity. As these systems have undergone mass loss near the tip of the RGB, tidal circularisation theory predicts them to be circularized. Our observations suggest that efficient eccentricity pumping mechanisms are active during the mass loss phase. Secondly we find a strong correlation between the mass ratio and the orbital period. Using binary evolution models, this relation is used to derive both an upper and lower limit on the initial mass ratio at which RLOF will be stable. These limits depend on the core mass of the sdB progenitor. KW - stars: subdwarfs KW - stars: binaries: spectroscopic KW - stars: fundamental parameters KW - stars: evolution Y1 - 2019 SN - 1335-1842 SN - 1336-0337 VL - 49 IS - 2 SP - 264 EP - 270 PB - Astronomický Ústav SAV CY - Tatranská Lomnica ER - TY - JOUR A1 - Pelisoli, Ingrid A1 - Dorsch, Matti A1 - Heber, Ulrich A1 - Gänsicke, Boris A1 - Geier, Stephan A1 - Kupfer, Thomas A1 - Nemeth, Peter A1 - Scaringi, Simone A1 - Schaffenroth, Veronika T1 - Discovery and analysis of three magnetic hot subdwarf stars BT - evidence for merger-induced magnetic fields JF - Monthly notices of the Royal Astronomical Society N2 - Magnetic fields can play an important role in stellar evolution. Among white dwarfs, the most common stellar remnant, the fraction of magnetic systems is more than 20 per cent. The origin of magnetic fields in white dwarfs, which show strengths ranging from 40 kG to hundreds of MG, is still a topic of debate. In contrast, only one magnetic hot subdwarf star has been identified out of thousands of known systems. Hot subdwarfs are formed from binary interaction, a process often associated with the generation of magnetic fields, and will evolve to become white dwarfs, which makes the lack of detected magnetic hot subdwarfs a puzzling phenomenon. Here we report the discovery of three new magnetic hot subdwarfs with field strengths in the range 300-500 kG. Like the only previously known system, they are all helium-rich O-type stars (He-sdOs). We analysed multiple archival spectra of the three systems and derived their stellar properties. We find that they all lack radial velocity variability, suggesting formation via a merger channel. However, we derive higher than typical hydrogen abundances for their spectral type, which are in disagreement with current model predictions. Our findings suggest a lower limit to the magnetic fraction of hot subdwarfs of 0.147(+0.143)(-0.047) per cent, and provide evidence for merger-induced magnetic fields which could explain white dwarfs with field strengths of 50-150 MG, assuming magnetic flux conservation. KW - stars: magnetic field KW - subdwarfs Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac1069 SN - 0035-8711 SN - 1365-2966 VL - 515 IS - 2 SP - 2496 EP - 2510 PB - Oxford University Press CY - Oxford ER -