TY - JOUR A1 - Mueller, Megan A. A1 - Licht, Alexis A1 - Campbell, C. A1 - Ocakoglu, F. A1 - Taylor, Marc Hollis A1 - Burch, L. A1 - Ugrai, Tamas A1 - Kaya, M. A1 - Kurtoglu, B. A1 - Coster, P. M. C. A1 - Metais, Mustafa Yücel A1 - Beard, Kenneth Christopher T1 - Collision Chronology Along the Izmir-Ankara-Erzincan Suture Zone: Insights From the Saricakaya Basin, Western Anatolia JF - Tectonics N2 - Debate persists concerning the timing and geodynamics of intercontinental collision, style of syncollisional deformation, and development of topography and fold-and-thrust belts along the >1,700-km-long Izmir-Ankara-Erzincan suture zone (IAESZ) in Turkey. Resolving this debate is a necessary precursor to evaluating the integrity of convergent margin models and kinematic, topographic, and biogeographic reconstructions of the Mediterranean domain. Geodynamic models argue either for a synchronous or diachronous collision during either the Late Cretaceous and/or Eocene, followed by Eocene slab breakoff and postcollisional magmatism. We investigate the collision chronology in western Anatolia as recorded in the sedimentary archives of the 90-km-long Saricakaya Basin perched at shallow structural levels along the IAESZ. Based on new zircon U-Pb geochronology and depositional environment and sedimentary provenance results, we demonstrate that the Saricakaya Basin is an Eocene sedimentary basin with sediment sourced from both the IAESZ and Sogut Thrust fault to the south and north, respectively, and formed primarily by flexural loading from north-south shortening along the syncollisional Sogut Thrust. Our results refine the timing of collision between the Anatolides and Pontide terranes in western Anatolia to Maastrichtian-Middle Paleocene and Early Eocene crustal shortening and basin formation. Furthermore, we demonstrate contemporaneous collision, deformation, and magmatism across the IAESZ, supporting synchronous collision models. We show that regional postcollisional magmatism can be explained by renewed underthrusting instead of slab breakoff. This new IAESZ chronology provides additional constraints for kinematic, geodynamic, and biogeographic reconstructions of the Mediterranean domain. KW - Anatolia KW - geochronology KW - collision KW - Eocene KW - detrital zircons Y1 - 2019 U6 - https://doi.org/10.1029/2019TC005683 SN - 0278-7407 SN - 1944-9194 VL - 38 IS - 10 SP - 3652 EP - 3674 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Kaya, Mustafa Yücel A1 - Dupont-Nivet, Guillaume A1 - Proust, Jean‐Noël A1 - Roperch, Pierrick A1 - Bougeois, Laurie A1 - Meijer, Niels A1 - Frieling, Joost A1 - Fioroni, Chiara A1 - Altiner, Sevinç Özkan A1 - Vardar, Ezgi A1 - Barbolini, Natasha A1 - Stoica, Marius A1 - Aminov, Jovid A1 - Mamtimin, Mehmut A1 - Zhaojie, Guo T1 - Paleogene evolution and demise of the proto-Paratethys Sea in Central Asia (Tarim and Tajik basins) BT - Role of intensified tectonic activity at ca. 41 Ma JF - Basin research N2 - The proto-Paratethys Sea covered a vast area extending from the Mediterranean Tethys to the Tarim Basin in western China during Cretaceous and early Paleogene. Climate modelling and proxy studies suggest that Asian aridification has been governed by westerly moisture modulated by fluctuations of the proto-Paratethys Sea. Transgressive and regressive episodes of the proto-Paratethys Sea have been previously recognized but their timing, extent and depositional environments remain poorly constrained. This hampers understanding of their driving mechanisms (tectonic and/or eustatic) and their contribution to Asian aridification. Here, we present a new chronostratigraphic framework based on biostratigraphy and magnetostratigraphy as well as a detailed palaeoenvironmental analysis for the Paleogene proto-Paratethys Sea incursions in the Tajik and Tarim basins. This enables us to identify the major drivers of marine fluctuations and their potential consequences on Asian aridification. A major regional restriction event, marked by the exceptionally thick (<= 400 m) shelf evaporites is assigned a Danian-Selandian age (ca. 63-59 Ma) in the Aertashi Formation. This is followed by the largest recorded proto-Paratethys Sea incursion with a transgression estimated as early Thanetian (ca. 59-57 Ma) and a regression within the Ypresian (ca. 53-52 Ma), both within the Qimugen Formation. The transgression of the next incursion in the Kalatar and Wulagen formations is now constrained as early Lutetian (ca. 47-46 Ma), whereas its regression in the Bashibulake Formation is constrained as late Lutetian (ca. 41 Ma) and is associated with a drastic increase in both tectonic subsidence and basin infilling. The age of the final and least pronounced sea incursion restricted to the westernmost margin of the Tarim Basin is assigned as Bartonian-Priabonian (ca. 39.7-36.7 Ma). We interpret the long-term westward retreat of the proto-Paratethys Sea starting at ca. 41 Ma to be associated with far-field tectonic effects of the Indo-Asia collision and Pamir/Tibetan plateau uplift. Short-term eustatic sea level transgressions are superimposed on this long-term regression and seem coeval with the transgression events in the other northern Peri-Tethyan sedimentary provinces for the 1st and 2nd sea incursions. However, the 3rd sea incursion is interpreted as related to tectonism. The transgressive and regressive intervals of the proto-Paratethys Sea correlate well with the reported humid and arid phases, respectively in the Qaidam and Xining basins, thus demonstrating the role of the proto-Paratethys Sea as an important moisture source for the Asian interior and its regression as a contributor to Asian aridification. KW - aridification KW - Asia KW - biostratigraphy KW - climate KW - magnetostratigraphy KW - microfossil KW - Paleogene KW - Pamir KW - proto-Paratethys KW - regression KW - Tajik Basin KW - Tarim Basin KW - tectonism KW - westerlies Y1 - 2018 U6 - https://doi.org/10.1111/bre.12330 SN - 0950-091X SN - 1365-2117 VL - 31 IS - 3 SP - 461 EP - 486 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Kaya, Mustafa Yücel A1 - Dupont-Nivet, Guillaume A1 - Frieling, Joost A1 - Fioroni, Chiara A1 - Rohrmann, Alexander A1 - Altıner, Sevinç Özkan A1 - Vardar, Ezgi A1 - Tanyas, Hakan A1 - Mamtimin, Mehmut A1 - Zhaojie, Guo T1 - The Eurasian epicontinental sea was an important carbon sink during the Palaeocene-Eocene thermal maximum JF - Communications earth and environment N2 - The Palaeocene-Eocene Thermal Maximum (ca. 56 million years ago) offers a primary analogue for future global warming and carbon cycle recovery. Yet, where and how massive carbon emissions were mitigated during this climate warming event remains largely unknown. Here we show that organic carbon burial in the vast epicontinental seaways that extended over Eurasia provided a major carbon sink during the Palaeocene-Eocene Thermal Maximum. We coupled new and existing stratigraphic analyses to a detailed paleogeographic framework and using spatiotemporal interpolation calculated ca. 720–1300 Gt organic carbon excess burial, focused in the eastern parts of the Eurasian epicontinental seaways. A much larger amount (2160–3900 Gt C, and when accounting for the increase in inundated shelf area 7400–10300 Gt C) could have been sequestered in similar environments globally. With the disappearance of most epicontinental seas since the Oligocene-Miocene, an effective negative carbon cycle feedback also disappeared making the modern carbon cycle critically dependent on the slower silicate weathering feedback. Y1 - 2022 U6 - https://doi.org/10.1038/s43247-022-00451-4 SN - 2662-4435 VL - 3 IS - 1 PB - Springer Nature CY - London ER -