TY - JOUR A1 - Blanchard, Gilles A1 - Kawanabe, Motoaki A1 - Sugiyama, Masashi A1 - Spokoiny, Vladimir G. A1 - Müller, Klaus-Robert T1 - In search of non-Gaussian components of a high-dimensional distribution N2 - Finding non-Gaussian components of high-dimensional data is an important preprocessing step for efficient information processing. This article proposes a new linear method to identify the '' non-Gaussian subspace '' within a very general semi-parametric framework. Our proposed method, called NGCA (non-Gaussian component analysis), is based on a linear operator which, to any arbitrary nonlinear (smooth) function, associates a vector belonging to the low dimensional non-Gaussian target subspace, up to an estimation error. By applying this operator to a family of different nonlinear functions, one obtains a family of different vectors lying in a vicinity of the target space. As a final step, the target space itself is estimated by applying PCA to this family of vectors. We show that this procedure is consistent in the sense that the estimaton error tends to zero at a parametric rate, uniformly over the family, Numerical examples demonstrate the usefulness of our method Y1 - 2006 UR - http://portal.acm.org/affiliated/jmlr/ SN - 1532-4435 ER - TY - JOUR A1 - Kawanabe, Motoaki A1 - Blanchard, Gilles A1 - Sugiyama, Masashi A1 - Spokoiny, Vladimir G. A1 - Müller, Klaus-Robert T1 - A novel dimension reduction procedure for searching non-Gaussian subspaces N2 - In this article, we consider high-dimensional data which contains a low-dimensional non-Gaussian structure contaminated with Gaussian noise and propose a new linear method to identify the non-Gaussian subspace. Our method NGCA (Non-Gaussian Component Analysis) is based on a very general semi-parametric framework and has a theoretical guarantee that the estimation error of finding the non-Gaussian components tends to zero at a parametric rate. NGCA can be used not only as preprocessing for ICA, but also for extracting and visualizing more general structures like clusters. A numerical study demonstrates the usefulness of our method Y1 - 2006 UR - http://www.springerlink.com/content/105633/ U6 - https://doi.org/10.1007/11679363_19 SN - 0302-9743 ER - TY - JOUR A1 - Kawanabe, Motoaki A1 - Müller, Klaus-Robert T1 - Estimating functions for blind separation when sources have variance dependencies N2 - A blind separation problem where the sources are not independent, but have variance dependencies is discussed. For this scenario Hyvarinen and Hurri (2004) proposed an algorithm which requires no assumption on distributions of sources and no parametric model of dependencies between components. In this paper, we extend the semiparametric approach of Amari and Cardoso (1997) to variance dependencies and study estimating functions for blind separation of such dependent sources. In particular, we show that many ICA algorithms are applicable to the variance-dependent model as well under mild conditions, although they should in principle not. Our results indicate that separation can be done based only on normalized sources which are adjusted to have stationary variances and is not affected by the dependent activity levels. We also study the asymptotic distribution of the quasi maximum likelihood method and the stability of the natural gradient learning in detail. Simulation results of artificial and realistic examples match well with our theoretical findings Y1 - 2005 ER - TY - JOUR A1 - Sugiyama, Masashi A1 - Kawanabe, Motoaki A1 - Müller, Klaus-Robert T1 - Trading variance reduction with unbiasedness : the regularized subspace information criterion for robust model selection in kernel regression N2 - A well-known result by Stein (1956) shows that in particular situations, biased estimators can yield better parameter estimates than their generally preferred unbiased counterparts. This letter follows the same spirit, as we will stabilize the unbiased generalization error estimates by regularization and finally obtain more robust model selection criteria for learning. We trade a small bias against a larger variance reduction, which has the beneficial effect of being more precise on a single training set. We focus on the subspace information criterion (SIC), which is an unbiased estimator of the expected generalization error measured by the reproducing kernel Hilbert space norm. SIC can be applied to the kernel regression, and it was shown in earlier experiments that a small regularization of SIC has a stabilization effect. However, it remained open how to appropriately determine the degree of regularization in SIC. In this article, we derive an unbiased estimator of the expected squared error, between SIC and the expected generalization error and propose determining the degree of regularization of SIC such that the estimator of the expected squared error is minimized. Computer simulations with artificial and real data sets illustrate that the proposed method works effectively for improving the precision of SIC, especially in the high-noise-level cases. We furthermore compare the proposed method to the original SIC, the cross-validation, and an empirical Bayesian method in ridge parameter selection, with good results Y1 - 2004 SN - 0899-7667 ER - TY - JOUR A1 - Ziehe, Andreas A1 - Kawanabe, Motoaki A1 - Harmeling, Stefan T1 - Blind separation of post-nonlinear mixtures using linearizing transformations and temporal decorrelation N2 - We propose two methods that reduce the post-nonlinear blind source separation problem (PNL-BSS) to a linear BSS problem. The first method is based on the concept of maximal correlation: we apply the alternating conditional expectation (ACE) algorithm-a powerful technique from nonparametric statistics-to approximately invert the componentwise nonlinear functions. The second method is a Gaussianizing transformation, which is motivated by the fact that linearly mixed signals before nonlinear transformation are approximately Gaussian distributed. This heuristic, but simple and efficient procedure works as good as the ACE method. Using the framework provided by ACE, convergence can be proven. The optimal transformations obtained by ACE coincide with the sought-after inverse functions of the nonlinearitics. After equalizing the nonlinearities, temporal decorrelation separation (TDSEP) allows us to recover the source signals. Numerical simulations testing "ACE-TD" and "Gauss-TD" on realistic examples are performed with excellent results Y1 - 2004 SN - 1532-4435 ER -