TY - JOUR A1 - Freymark, Jessica A1 - Bott, Judith A1 - Cacace, Mauro A1 - Ziegler, Moritz 0. A1 - Scheck-Wenderoth, Magdalena T1 - Influence of the Main Border Faults on the 3D Hydraulic Field of the Central Upper Rhine Graben JF - Geofluids N2 - The Upper Rhine Graben (URG) is an active rift with a high geothermal potential. Despite being a well-studied area, the three-dimensional interaction of the main controlling factors of the thermal and hydraulic regime is still not fully understood. Therefore, we have used a data-based 3D structural model of the lithological configuration of the central URG for some conceptual numerical experiments of 3D coupled simulations of fluid and heat transport. To assess the influence of the main faults bordering the graben on the hydraulic and the deep thermal field, we carried out a sensitivity analysis on fault width and permeability. Depending on the assigned width and permeability of the main border faults, fluid velocity and temperatures are affected only in the direct proximity of the respective border faults. Hence, the hydraulic characteristics of these major faults do not significantly influence the graben-wide groundwater flow patterns. Instead, the different scenarios tested provide a consistent image of the main characteristics of fluid and heat transport as they have in common: (1) a topography-driven basin-wide fluid flow perpendicular to the rift axis from the graben shoulders to the rift center, (2) a N/NE-directed flow parallel to the rift axis in the center of the rift and, (3) a pronounced upflow of hot fluids along the rift central axis, where the streams from both sides of the rift merge. This upflow axis is predicted to occur predominantly in the center of the URG (northern and southern model area) and shifted towards the eastern boundary fault (central model area). Y1 - 2019 U6 - https://doi.org/10.1155/2019/7520714 SN - 1468-8115 SN - 1468-8123 PB - Wiley-Hindawi CY - London ER - TY - JOUR A1 - Heidbach, Oliver A1 - Rajabi, Mojtaba A1 - Cui, Xiaofeng A1 - Fuchs, Karl A1 - Mueller, Birgit A1 - Reinecker, John A1 - Reiter, Karsten A1 - Tingay, Mark A1 - Wenzel, Friedemann A1 - Xie, Furen A1 - Ziegler, Moritz O. A1 - Zoback, Mary-Lou A1 - Zoback, Mark T1 - The World Stress Map database release 2016 BT - Crustal stress pattern across scales JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - Knowledge of the present-day crustal in-situ stress field is a key for the understanding of geodynamic processes such as global plate tectonics and earthquakes. It is also essential for the management of geo-reservoirs and underground storage sites for energy and waste. Since 1986, the World Stress Map (WSM) project has systematically compiled the orientation of maximum horizontal stress (S-Hmax). For the 30th anniversary of the project, the WSM database has been updated significantly with 42,870 data records which is double the amount of data in comparison to the database release in 2008. The update focuses on areas with previously sparse data coverage to resolve the stress pattern on different spatial scales. In this paper, we present details of the new WSM database release 2016 and an analysis of global and regional stress pattern. With the higher data density, we can now resolve stress pattern heterogeneities from plate-wide to local scales. In particular, we show two examples of 40 degrees-60 degrees S-Hmax rotations within 70 km. These rotations can be used as proxies to better understand the relative importance of plate boundary forces that control the long wave-length pattern in comparison to regional and local controls of the crustal stress state. In the new WSM project phase IV that started in 2017, we will continue to further refine the information on the S-Hmax orientation and the stress regime. However, we will also focus on the compilation of stress magnitude data as this information is essential for the calibration of geomechanical-numerical models. This enables us to derive a 3-D continuous description of the stress tensor from point-wise and incomplete stress tensor information provided with the WSM database. Such forward models are required for safety aspects of anthropogenic activities in the underground and for a better understanding of tectonic processes such as the earthquake cycle. KW - Tectonic stress KW - Database KW - Stress tensor KW - Geomechanical modelling Y1 - 2018 U6 - https://doi.org/10.1016/j.tecto.2018.07.007 SN - 0040-1951 SN - 1879-3266 VL - 744 SP - 484 EP - 498 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pena, Carlos A1 - Heidbach, Oliver A1 - Moreno, Marcos A1 - Bedford, Jonathan A1 - Ziegler, Moritz 0. A1 - Tassara, Andres Ollero A1 - Oncken, Onno T1 - Role of Lower Crust in the Postseismic Deformation of the 2010 Maule Earthquake: Insights from a Model with Power-Law Rheology JF - Pure and applied geophysics N2 - The surface deformation associated with the 2010 M-w 8.8 Maule earthquake in Chile was recorded in great detail before, during and after the event. The high data quality of the continuous GPS (cGPS) observations has facilitated a number of studies that model the postseismic deformation signal with a combination of relocking, afterslip and viscoelastic relaxation using linear rheology for the upper mantle. Here, we investigate the impact of using linear Maxwell or power-law rheology with a 2D geomechanical-numerical model to better understand the relative importance of the different processes that control the postseismic deformation signal. Our model results reveal that, in particular, the modeled cumulative vertical postseismic deformation pattern in the near field (< 300 km from the trench) is very sensitive to the location of maximum afterslip and choice of rheology. In the model with power-law rheology, the afterslip maximum is located at 20-35 km rather than > 50 km depth as suggested in previous studies. The explanation for this difference is that in the model with power-law rheology the relaxation of coseismically imposed differential stresses occurs mainly in the lower crust. However, even though the model with power-law rheology probably has more potential to explain the vertical postseismic signal in the near field, the uncertainty of the applied temperature field is substantial, and this needs further investigations and improvements. Y1 - 2019 U6 - https://doi.org/10.1007/s00024-018-02090-3 SN - 0033-4553 SN - 1420-9136 VL - 176 IS - 9 SP - 3913 EP - 3928 PB - Springer CY - Basel ER - TY - JOUR A1 - Rajabi, Mojtaba A1 - Ziegler, Moritz O. A1 - Tingay, Mark A1 - Heidbach, Oliver A1 - Reynolds, Scott T1 - Contemporary tectonic stress pattern of the Taranaki Basin, New Zealand JF - Journal of geophysical research : Solid earth N2 - The present-day stress state is a key parameter in numerous geoscientific research fields including geodynamics, seismic hazard assessment, and geomechanics of georeservoirs. The Taranaki Basin of New Zealand is located on the Australian Plate and forms the western boundary of tectonic deformation due to Pacific Plate subduction along the Hikurangi margin. This paper presents the first comprehensive wellbore-derived basin-scale in situ stress analysis in New Zealand. We analyze borehole image and oriented caliper data from 129 petroleum wells in the Taranaki Basin to interpret the shape of boreholes and determine the orientation of maximum horizontal stress (S-Hmax). We combine these data (151 S-Hmax data records) with 40 stress data records derived from individual earthquake focal mechanism solutions, 6 from stress inversions of focal mechanisms, and 1 data record using the average of several focal mechanism solutions. The resulting data set has 198 data records for the Taranaki Basin and suggests a regional S-Hmax orientation of N068 degrees E (22 degrees), which is in agreement with NW-SE extension suggested by geological data. Furthermore, this ENE-WSW average S-Hmax orientation is subparallel to the subduction trench and strike of the subducting slab (N50 degrees E) beneath the central western North Island. Hence, we suggest that the slab geometry and the associated forces due to slab rollback are the key control of crustal stress in the Taranaki Basin. In addition, we find stress perturbations with depth in the vicinity of faults in some of the studied wells, which highlight the impact of local stress sources on the present-day stress rotation. KW - in situ stress KW - Taranaki Basin KW - New Zealand KW - plate tectonics KW - subduction zone Y1 - 2016 U6 - https://doi.org/10.1002/2016JB013178 SN - 2169-9313 SN - 2169-9356 VL - 121 SP - 6053 EP - 6070 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Reiter, Karsten A1 - Heidbach, Oliver A1 - Schmitt, Douglas A1 - Haug, Kristine A1 - Ziegler, Moritz O. A1 - Moeck, Inga T1 - A revised crustal stress orientation database for Canada JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - The Canadian database on contemporary crustal stress has not been revised systematically in the past two decades. Here we present the results of our new compilation that contains 514 new data records for the orientation data of maximum compressive horizontal stress and 188 data records that were re-assessed. In total the Canadian stress database has now 1667 data records, which is an increase of about 45%. From these data, a new Canadian Stress map as well as one for the Province of Alberta is presented. To analyse the stress pattern, we use the quasi median on the circle as a smoothing algorithm that generates a smoothed stress map of the maximum compressive horizontal stress orientation on a regular grid. The newly introduced quasi interquartile range on the circle estimates the spreading of the data and is used as a measure for the wave-length of the stress pattern. The result of the hybrid wavelength analysis confirms that long spatial wavelength stress patterns (>= 1000 km) exist in large areas in Canada. The observed stress pattern is transmitted through the intra-plate regions. The results reveal that shorter spatial wave length variation of the maximum compressive horizontal stress orientation of less than 200 km, prevails particularly in south-eastern and western Canada. Regional stress sources such as density contrasts, active fault systems, crustal structures, etc. might have a significant impact in these regions. In contrast to these variations, the observed stress pattern in the Alberta Basin is very homogeneous and mainly controlled by plate boundary forces and body forces. The influence of curvature of the Rocky Mountains salient in southern Alberta is minimal. The present-day horizontal stress orientations determined herein have important implications for the production of hydrocarbons and geothermal energy in the Alberta Basin. (C) 2014 Elsevier B.V. All rights reserved. KW - Stress pattern KW - Tectonic stress KW - Canada KW - Alberta KW - Database KW - Circular statistics Y1 - 2014 U6 - https://doi.org/10.1016/j.tecto.2014.08.006 SN - 0040-1951 SN - 1879-3266 VL - 636 SP - 111 EP - 124 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Soumaya, Abdelkader A1 - Ben Ayed, Noureddine A1 - Rajabi, Mojtaba A1 - Meghraoui, Mustapha A1 - Delvaux, Damien A1 - Kadri, Ali A1 - Ziegler, Moritz A1 - Maouche, Said A1 - Braham, Ahmed T1 - Active Faulting Geometry and Stress Pattern Near Complex Strike-Slip Systems Along the Maghreb Region BT - Constraints on Active Convergence in the Western Mediterranean JF - Tectonics N2 - The Maghreb region (from Tunisia to Gibraltar) is a key area in the western Mediterranean to study the active tectonics and stress pattern across the Africa-Eurasia convergent plate boundary. In the present study, we compile comprehensive data set of well-constrained crustal stress indicators (from single focal mechanism solutions, formal inversion of focal mechanism solutions, and young geologic fault slip data) based on our and published data analyses. Stress inversion of focal mechanisms reveals a first-order transpression-compatible stress field and a second-order spatial variation of tectonic regime across the Maghreb region, with a relatively stable S-Hmax orientation from east to west. Therefore, the present-day active contraction of the western Africa-Eurasia plate boundary is accommodated by (1) E-W strike-slip faulting with reverse component along the Eastern Tell and Saharan-Tunisian Atlas, (2) a predominantly NE trending thrust faulting with strike-slip component in the Western Tell part, and (3) a conjugate strike-slip faulting regime with normal component in the Alboran/Rif domain. This spatial variation of the present-day stress field and faulting regime is relatively in agreement with the inferred stress information from neotectonic features. According to existing and newly proposed structural models, we highlight the role of main geometrically complex shear zones in the present-day stress pattern of the Maghreb region. Then, different geometries of these major inherited strike-slip faults and its related fractures (V-shaped conjugate fractures, horsetail splays faults, and Riedel fractures) impose their component on the second- and third-order stress regimes. Neotectonic and smoothed present-day stress map (mean S-Hmax orientation) reveal that plate boundary forces acting on the Africa-Eurasia collisional plates control the long wavelength of the stress field pattern in the Maghreb. The current tectonic deformations and the upper crustal stress field in the study area are governed by the interplay of the oblique plate convergence (i.e., Africa-Eurasia), lithosphere-mantle interaction, and preexisting tectonic weakness zones. KW - Maghreb KW - strike-slip system KW - conjugate fractures KW - horsetail splays KW - active stress KW - tectonic regime Y1 - 2018 U6 - https://doi.org/10.1029/2018TC004983 SN - 0278-7407 SN - 1944-9194 VL - 37 IS - 9 SP - 3148 EP - 3173 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Ziegler, Moritz O. T1 - The 3D in-situ stress field and its changes in geothermal reservoirs T1 - Das 3D in-situ Spannungsfeld und seine Änderungen in Geothermiereservoiren N2 - Information on the contemporary in-situ stress state of the earth’s crust is essential for geotechnical applications and physics-based seismic hazard assessment. Yet, stress data records for a data point are incomplete and their availability is usually not dense enough to allow conclusive statements. This demands a thorough examination of the in-situ stress field which is achieved by 3D geomechanicalnumerical models. However, the models spatial resolution is limited and the resulting local stress state is subject to large uncertainties that confine the significance of the findings. In addition, temporal variations of the in-situ stress field are naturally or anthropogenically induced. In my thesis I address these challenges in three manuscripts that investigate (1) the current crustal stress field orientation, (2) the 3D geomechanical-numerical modelling of the in-situ stress state, and (3) the phenomenon of injection induced temporal stress tensor rotations. In the first manuscript I present the first comprehensive stress data compilation of Iceland with 495 data records. Therefore, I analysed image logs from 57 boreholes in Iceland for indicators of the orientation of the maximum horizontal stress component. The study is the first stress survey from different kinds of stress indicators in a geologically very young and tectonically active area of an onshore spreading ridge. It reveals a distinct stress field with a depth independent stress orientation even very close to the spreading centre. In the second manuscript I present a calibrated 3D geomechanical-numerical modelling approach of the in-situ stress state of the Bavarian Molasse Basin that investigates the regional (70x70x10km³) and local (10x10x10km³) stress state. To link these two models I develop a multi-stage modelling approach that provides a reliable and efficient method to derive from the larger scale model initial and boundary conditions for the smaller scale model. Furthermore, I quantify the uncertainties in the models results which are inherent to geomechanical-numerical modelling in general and the multi-stage approach in particular. I show that the significance of the models results is mainly reduced due to the uncertainties in the material properties and the low number of available stress magnitude data records for calibration. In the third manuscript I investigate the phenomenon of injection induced temporal stress tensor rotation and its controlling factors. I conduct a sensitivity study with a 3D generic thermo-hydro-mechanical model. I show that the key control factors for the stress tensor rotation are the permeability as the decisive factor, the injection rate, and the initial differential stress. In particular for enhanced geothermal systems with a low permeability large rotations of the stress tensor are indicated. According to these findings the estimation of the initial differential stress in a reservoir is possible provided the permeability is known and the angle of stress rotation is observed. I propose that the stress tensor rotations can be a key factor in terms of the potential for induced seismicity on pre-existing faults due to the reorientation of the stress field that changes the optimal orientation of faults. N2 - Kenntnis des derzeitigen in-situ Spannungszustandes der Erdkruste ist essenziell für geotechnische Anwendungen und seismische Gefährdungsabschätzungen, welche auf physikalischen Beobachtungen basieren. Jedoch sind die Spannungsinformationen jedes Datenpunktes unvollständig und die Menge an vorhandenen Datenpunkten ist normalerweise nicht groß genug, um schlüssige Ergebnisse zu erzielen. Daher ist eine eingehende Untersuchung des in-situ Spannungsfeldes, welche durch 3D geomechanisch-numerische Modellierung geleistet wird, erforderlich. Jedoch ist die räumliche Auflösung der Modelle begrenzt und der resultierende Spannungszustand ist großen Unsicherheiten unterworfen, welche die Aussagekraft der Ergebnisse beschränken. Zusätzlich gibt es zeitliche Änderungen des Spannungsfeldes, welche durch natürliche Prozesse bedingt oder menschengemacht sind. In meiner Dissertation behandle ich diese Herausforderungen in drei Manuskripten, welche (1) die Orientierung des derzeitigen Spannungszustandes, (2) die 3D geomechanisch-numerische Modellierung des in-situ Spannungszustandes und (3) das Phänomen injektionsinduzierter zeitlicher Rotationen des Spannungstensors zum Thema haben. In dem ersten Manuskript präsentiere ich die erste umfassende Spannungsdatensammlung von Island mit insgesamt 495 Einträgen. Dafür habe ich Bilddatenlogs aus 57 Bohrlöchern in Island auf Indikatoren der maximalen horizontalen Spannungsorientierung hin untersucht. Diese Studie ist die erste ganzheitliche Spannungsuntersuchung, welche sich auf verschiedene Indikatoren der Spannungsorientierung stützt und in einem geologisch sehr jungen und tektonisch aktiven Gebiet auf einem Mittelozeanischen Rücken an Land liegt. Es zeigt sich, dass selbst sehr nahe an der Plattengrenze eine tiefenunabhängige, eindeutige Spannungsorientierung existiert. In dem zweiten Manuskript präsentiere ich einen kalibrierten 3D geomechanisch-numerischen Modellierungsansatz des in-situ Spannungszustandes des bayrischen Molassebeckens welches den regionalen (70x70x10km³) und den lokalen (10x10x10km³) Spannungszustand untersucht. Um diese zwei Modelle zu verbinden, habe ich ein mehrstufigen Modellansatz entworfen, welcher eine zuverlässige und effiziente Methode darstellt um Randbedingungen und Initialbedingungen für das kleinere Modell aus dem größeren Modell abzuleiten. Des Weiteren quantifiziere ich die Unsicherheiten in den Modellergebnissen, welche im Allgemeinen durch geomechanisch-numerische Modellierung und im Speziellen durch den Mehrstufenansatz entstehen. Ich zeige, dass die Signifikanz der Modellergebnisse hauptsächlich durch die Unsicherheiten in den Materialeigenschaften sowie der geringen Anzahl vorhandener Spannungsmagnitudendaten zur Kalibrierung reduziert wird. In dem dritten Manuskript untersuche ich das Phänomen injektionsinduzierter zeitlicher Rotationen des Spannungstensors und deren kontrollierende Parameter. Ich führe eine Sensitivitätsanalyse mit einem generischen 3D thermo-hydro-mechanischen Modell durch. Darin zeige ich, dass die Schlüsselparameter, welche die Rotationen des Spannungstensors kontrollieren, die Permeabilität des Reservoirgesteins als der entscheidende Faktor, die Injektionsrate und die initiale Differenzspannung sind. Insbesondere für geothermische Systeme nach dem Hot-Dry-Rock-Verfahren mit einer geringen Permeabilität weisen die Ergebnisse auf große Rotationen des Spannungstensors hin. Gemäß diesen Ergebnissen kann die initiale Differenzspannung in einem Reservoir abgeschätzt werden, sollte die Permeabilität bekannt sein und der Winkel der Spannungsrotation beobachtet werden. Ich schlage vor, dass Spannungsrotationen ein Schlüsselfaktor in Bezug auf das Potenzial für induzierte Seismizität sind, welche auf prä-existierenden Störungen entsteht, die durch die Reorientierung des Spannungsfeldes optimal orientiert werden. KW - stress KW - stress changes KW - induced seismicity KW - geothermal KW - geomechanical modelling KW - Spannung KW - Spannungsänderungen KW - induzierte Seismizität KW - Geothermie KW - geomechanische Modellierung Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403838 ER - TY - GEN A1 - Ziegler, Moritz O. A1 - Heidbach, Oliver A1 - Reinecker, John A1 - Przybycin, Anna M. A1 - Scheck-Wenderoth, Magdalena T1 - A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The knowledge of the contemporary in situ stress state is a key issue for safe and sustainable subsurface engineering. However, information on the orientation and magnitudes of the stress state is limited and often not available for the areas of interest. Therefore 3-D geomechanical-numerical modelling is used to estimate the in situ stress state and the distance of faults from failure for application in subsurface engineering. The main challenge in this approach is to bridge the gap in scale between the widely scattered data used for calibration of the model and the high resolution in the target area required for the application. We present a multi-stage 3-D geomechanical-numerical approach which provides a state-of-the-art model of the stress field for a reservoir-scale area from widely scattered data records. Therefore, we first use a large-scale regional model which is calibrated by available stress data and provides the full 3-D stress tensor at discrete points in the entire model volume. The modelled stress state is used subsequently for the calibration of a smaller-scale model located within the large-scale model in an area without any observed stress data records. We exemplify this approach with two-stages for the area around Munich in the German Molasse Basin. As an example of application, we estimate the scalar values for slip tendency and fracture potential from the model results as measures for the criticality of fault reactivation in the reservoir-scale model. The modelling results show that variations due to uncertainties in the input data are mainly introduced by the uncertain material properties and missing S-Hmax magnitude estimates needed for a more reliable model calibration. This leads to the conclusion that at this stage the model's reliability depends only on the amount and quality of available stress information rather than on the modelling technique itself or on local details of the model geometry. Any improvements in modelling and increases in model reliability can only be achieved using more high-quality data for calibration. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 556 KW - in-situ stress KW - induced seismicity KW - geothermal-reservoirs KW - geomechanical model KW - fault reactivation KW - alpine foreland KW - map project KW - km depth KW - orientation KW - system Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409806 SN - 1866-8372 IS - 556 ER - TY - JOUR A1 - Ziegler, Moritz O. A1 - Heidbach, Oliver A1 - Reinecker, John A1 - Przybycin, Anna M. A1 - Scheck-Wenderoth, Magdalena T1 - A multi-stage 3-D stress field modelling approach exemplified in the Bavarian Molasse Basin JF - Solid earth Y1 - 2016 U6 - https://doi.org/10.5194/se-7-1365-2016 SN - 1869-9510 SN - 1869-9529 VL - 7 SP - 1365 EP - 1382 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Ziegler, Moritz O. A1 - Heidbach, Oliver A1 - Zang, Arno A1 - Martinez-Garzon, Patricia A1 - Bohnhoff, Marco T1 - Estimation of the differential stress from the stress rotation angle in low permeable rock JF - Geophysical research letters N2 - Rotations of the principal stress axes are observed as a result of fluid injection into reservoirs. We use a generic, fully coupled 3-D thermo-hydro-mechanical model to investigate systematically the dependence of this stress rotation on different reservoir properties and injection scenarios. We find that permeability, injection rate, and initial differential stress are the key factors, while other reservoir properties only play a negligible role. In particular, we find that thermal effects do not significantly contribute to stress rotations. For reservoir types with usual differential stress and reservoir treatment the occurrence of significant stress rotations is limited to reservoirs with a permeability of less than approximately 10(-12)m(2). Higher permeability effectively prevents stress rotations to occur. Thus, according to these general findings, the observed principal stress axes rotation can be used as a proxy of the initial differential stress provided that rock permeability and fluid injection rate are known a priori. Y1 - 2017 U6 - https://doi.org/10.1002/2017GL073598 SN - 0094-8276 SN - 1944-8007 VL - 44 SP - 6761 EP - 6770 PB - American Geophysical Union CY - Washington ER -