TY - JOUR A1 - Meibom, S. A1 - Barnes, Sydney A. A1 - Covey, K. A1 - Jeffries, R. D. A1 - Matt, S. A1 - Morin, J. A1 - Palacios, A. A1 - Reiners, A. A1 - Sicilia-Aguilar, A. A1 - Irwin, J. T1 - Angular momentum evolution of cool stars: Toward a synthesis of observations and theory before and after the ZAMS JF - Astronomische Nachrichten = Astronomical notes N2 - The coexistence of fast and slowly rotating cool stars in ZAMS clusters - forming distinct sequences in the color vs. rotation period plane - is providing clues to differences in their pre main-sequence angular momentum evolution. This Cool Stars 17 splinter was dedicated to a discussion of new observational and theoretical results that may help discriminate between proposed mechanisms for early angular momentum regulation and help us explain the observed ZAMS dichotomy. KW - circumstellar matter KW - stars: late-type KW - stars: magnetic fields KW - stars: pre-main sequence KW - stars: rotation Y1 - 2013 U6 - https://doi.org/10.1002/asna.201211777 SN - 0004-6337 SN - 1521-3994 VL - 334 IS - 1-2 SP - 168 EP - 171 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Dormann, Carsten F. A1 - Schymanski, Stanislaus J. A1 - Cabral, Juliano Sarmento A1 - Chuine, Isabelle A1 - Graham, Catherine A1 - Hartig, Florian A1 - Kearney, Michael A1 - Morin, Xavier A1 - Römermann, Christine A1 - Schröder-Esselbach, Boris A1 - Singer, Alexander T1 - Correlation and process in species distribution models: bridging a dichotomy JF - Journal of biogeography N2 - Within the field of species distribution modelling an apparent dichotomy exists between process-based and correlative approaches, where the processes are explicit in the former and implicit in the latter. However, these intuitive distinctions can become blurred when comparing species distribution modelling approaches in more detail. In this review article, we contrast the extremes of the correlativeprocess spectrum of species distribution models with respect to core assumptions, model building and selection strategies, validation, uncertainties, common errors and the questions they are most suited to answer. The extremes of such approaches differ clearly in many aspects, such as model building approaches, parameter estimation strategies and transferability. However, they also share strengths and weaknesses. We show that claims of one approach being intrinsically superior to the other are misguided and that they ignore the processcorrelation continuum as well as the domains of questions that each approach is addressing. Nonetheless, the application of process-based approaches to species distribution modelling lags far behind more correlative (process-implicit) methods and more research is required to explore their potential benefits. Critical issues for the employment of species distribution modelling approaches are given, together with a guideline for appropriate usage. We close with challenges for future development of process-explicit species distribution models and how they may complement current approaches to study species distributions. KW - Hypothesis generation KW - mechanistic model KW - parameterization KW - process-based model KW - species distribution model KW - SDM KW - uncertainty KW - validation Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2699.2011.02659.x SN - 0305-0270 VL - 39 IS - 12 SP - 2119 EP - 2131 PB - Wiley-Blackwell CY - Hoboken ER -