TY - GEN A1 - Kumke, Michael Uwe A1 - Klier, Dennis Tobias T1 - Upconversion NaYF4:Yb:Er nanoparticles co-doped with Gd3+ and Nd3+ for thermometry on the nanoscale N2 - In the present work, the upconversion luminescence properties of oleic acid capped NaYF4:Gd3+:Yb3+:Er3+ upconversion nanoparticles (UCNP) with pure β crystal phase and Nd3+ ions as an additional sensitizer were studied in the temperature range of 288 K < T < 328 K. The results of this study showed that the complex interplay of different mechanisms and effects, causing the special temperature behavior of the UCNP can be developed into thermometry on the nanoscale, e.g. to be applied in biological systems on a cellular level. The performance was improved by the use of Nd3+ as an additional dopant utilizing the cascade sensitization mechanism in tri-doped UCNP. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 304 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-102677 SP - 67149 EP - 67156 ER - TY - JOUR A1 - Marmodée, Bettina A1 - Klerk de, Joost A1 - Kumke, Michael Uwe A1 - Ariese, Freek A1 - Gooijer, Cees T1 - Spectroscopic investigations of complexes between Eu(III) and aromatic carboxylic ligands N2 - In order to obtain information on the number and symmetry of the different Eu3+ complexes formed with several hydroxybenzoic acids, ultra-low temperature luminescence measurements at 4.7 K were carried out. Hydroxybenzoic acids were used as simple model compounds for metal binding structures in humic substances (HS). Information on the complexes was extracted from high-resolution total luminescence spectra (TLS), which were obtained by scanning through the D-5(0) <-- F-7(0) transition of Eu(III) with a pulsed dye laser and measuring the emission in the wavelength range of the D- 5(0) --> F-7(0) and D-5(0) --> F-7(0) transitions simultaneously. By extracting the crystal field strength parameter N- v(B-2q) from the TLS, it was found that N-v(B-2q) was not directly correlated with the excitation energy. Further, the symmetry of the individual complexes formed was extracted from the experimental data. (C) 2007 Elsevier B.V. All rights reserved. Y1 - 2008 U6 - https://doi.org/10.1016/j.jallcom.2007.04.150 ER - TY - JOUR A1 - Schuler, Benjamin A1 - Lipman, Everett A. A1 - Steinbach, P. J. A1 - Kumke, Michael Uwe A1 - Eaton, W. A. T1 - Polyproline and the "spectroscopic ruler" revisited with single-molecule fluorescence N2 - To determine whether Forster resonance energy transfer (FRET) measurements can provide quantitative distance information in single-molecule fluorescence experiments on polypeptides, we measured FRET efficiency distributions for donor and acceptor dyes attached to the ends of freely diffusing polyproline molecules of various lengths. The observed mean FRET efficiencies agree with those determined from ensemble lifetime measurements but differ considerably from the values expected from Forster theory, with polyproline treated as a rigid rod. At donor-acceptor distances much less than the Forster radius R-o, the observed efficiencies are lower than predicted, whereas at distances comparable to and greater than R-0, they are much higher. Two possible contributions to the former are incomplete orientational averaging during the donor lifetime and, because of the large size of the dyes, breakdown of the point-dipole approximation assumed in Forster theory. End-to-end distance distributions and correlation times obtained from Langevin molecular dynamics simulations suggest that the differences for the longer polyproline peptides can be explained by chain bending, which considerably shortens the donor-acceptor distances Y1 - 2005 SN - 0027-8424 ER - TY - JOUR A1 - Tiseanu, Carmen A1 - Geßner, Andre A1 - Kumke, Michael Uwe A1 - Parvulescu, V. T1 - Dehydration and rehydration effects on the photoluminescence properties of terbium-exchanged MFI type materials Y1 - 2008 U6 - https://doi.org/10.1016/j.jnoncrysol.2007.11.017 ER - TY - JOUR A1 - Tiseanu, Carmen A1 - Geßner, Andre A1 - Kumke, Michael Uwe A1 - Gagea, Bogdan A1 - Parvulescu, Vasile Ion A1 - Martens, Johan T1 - Photoluminescence spectra and dynamics of lanthanide-doped microporous materials N2 - A series of terbium- and europium-exchanged microporous-mesoporous zeolite Socony Mobil Five (MFI)-type materials such as Zeotile-1 and Zeogrid with varying Si/Al ratios was investigated using FTIR, PXRD, adsorption- desorption isotherms of N-2 at 77 K and time-resolved luminescence spectroscopy. Silylation of the lanthanides-exchanged Zeotile-1 and Zeogrid with hexadecyl trimethoxysilanes via post-synthesis grafting was also studied. The results showed that the lanthanide's photoluminescence spectra and decays were modified due to silylation. The different silylation effects in Zeotile-1 and Zeogrid were correlated with the textural properties of the investigated materials. (C) 2007 Elsevier B.V. All rights reserved. Y1 - 2008 UR - http://www.sciencedirect.com/science/article/pii/S0022231307003262 U6 - https://doi.org/10.1016/j.jlumin.2007.10.018 ER - TY - JOUR A1 - Dosche, Carsten A1 - Kumke, Michael Uwe A1 - Löhmannsröben, Hans-Gerd A1 - Ariese, Freek A1 - Bader, Arjen N. A1 - Gooijer, Cees A1 - Miljanic, Ognjen S. A1 - Iwamoto, M. A1 - Vollhardt, K. Peter C. A1 - Puchta, Ralph A1 - Hommes, N. J. R. V. T1 - Deuteration effects on the vibronic structure of the fluorescence spectra and the internal conversion rates of triangular [4]phenylene N2 - Deuteration effects on the vibronic structure of the emission and excitation spectra of triangular [ 4] phenylene (D-3h [4]phenylene) were studied using laser-excited Shpol'skii spectroscopy (LESS) in an octane matrix at 4.2 K. For correct assignment of the vibrational modes, the experimental results were compared with calculated frequencies (B3LYP/6-31G*). CH vibrations were identified by their characteristic isotopic shifts in the spectra of deuterated triangular [4]phenylenes. Two CC stretching modes, at 100 cm(-1) and 1176 cm(-1), suitable as probes for bond strength changes in the excited state, were identified. The isotope effect on the internal conversion rates of triangular [4] phenylene was evaluated from measurements of temperature dependent lifetime. Isotope dependency and the magnitude of the internal conversion rates indicate that internal conversion in triangular [4] phenylene is most likely induced by CH vibrations. The results obtained by LESS and lifetime measurements were compared with PM3 PECI calculations of the excited state structure. The theoretical results and the relation between ground and excited state vibration energies of the 1176 cm(-1) probe vibration indicate a reduction of bond alternation of the central cyclohexatriene ring in the excited state Y1 - 2004 SN - 1463-9076 ER - TY - JOUR A1 - Tiseanu, Carmen A1 - Frunza, L. A1 - Kumke, Michael Uwe T1 - Time-resolved photoluminescence analysis of distribution and migration of terbium ions in zeolites X N2 - The photoluminescence (PL) dynamics of terbium-exchanged zeolites X was investigated upon laser excitation at 355 nm. The results evidenced the presence of at least two terbium main environments with PL lifetimes varying between 391-411 and 753-770 mus. The two-site nature of terbium distribution in zeolites X permitted a quantitative analysis of the migration process of terbium ions inside the pores and cavities upon dehydration in air at 200 degreesC. Besides the increase of the PL lifetimes with about 30% and 80% compared to those of the hydrated zeolite, a fraction of almost 30% of terbium ions was estimated to migrate from the supercages to the neighboring sodalites or hexagonal prisms. Our results evidenced for the first time the capability of time-resolved luminescence spectroscopy in quantitatively tracking for the intrazeolitic migration of lanthanides. (C) 2004 Elsevier B.V. All rights reserved Y1 - 2004 ER - TY - THES A1 - Kumke, Michael Uwe T1 - Huminstoffe und organische Modellliganden und ihre Wechselwirkung mit Metallionen und polyzyklischen aromatischen Kohlenwasserstoffen T1 - Humic substances and organic model ligands – Interactions with metal ions and polycyclic aromatic hydrocarbons N2 - Immobilisierung bzw. Mobilisierung und Transport von Schadstoffen in der Umwelt, besonders in den Kompartimenten Boden und Wasser, sind von fundamentaler Bedeutung für unser (Über)Leben auf der Erde. Einer der Hauptreaktionspartner für organische und anorganische Schadstoffe (Xenobiotika) in der Umwelt sind Huminstoffe (HS). HS sind Abbauprodukte pflanzlichen und tierischen Gewebes, die durch eine Kombination von chemischen und biologischen Ab- und Umbauprozessen entstehen. Bedingt durch ihre Genese stellen HS außerordentlich heterogene Stoffsysteme dar, die eine Palette von verschiedenartigen Wechselwirkungen mit Schadstoffen zeigen. Die Untersuchung der fundamentalen Wechselwirkungsmechanismen stellt ebenso wie deren quantitative Beschreibung höchste Anforderungen an die Untersuchungsmethoden. Zur qualitativen und quantitativen Charakterisierung der Wechselwirkungen zwischen HS und Xenobiotika werden demnach analytische Methoden benötigt, die bei der Untersuchung von extrem heterogenen Systemen aussagekräftige Daten zu liefern vermögen. Besonders spektroskopische Verfahren, wie z.B. lumineszenz-basierte Verfahren, besitzen neben der hervorragenden Selektivität und Sensitivität, auch eine Multidimensionalität (bei der Lumineszenz sind es die Beobachtungsgrößen Intensität IF, Anregungswellenlänge lex, Emissionswellenlänge lem und Fluoreszenzabklingzeit tF), die es gestattet, auch heterogene Systeme wie HS direkt zu untersuchen. Zur Charakterisierung können sowohl die intrinsischen Fluoreszenzeigenschaften der HS als auch die von speziell eingeführten Lumineszenzsonden verwendet werden. In beiden Fällen werden die zu Grunde liegenden fundamentalen Konzepte der Wechselwirkungen von HS mit Xenobiotika untersucht und charakterisiert. Für die intrinsische Fluoreszenz der HS konnte gezeigt werden, dass neben molekularen Strukturen besonders die Verknüpfung der Fluorophore im Gesamt-HS-Molekül von Bedeutung ist. Konformative Freiheit und die Nachbarschaft zu als Energieakzeptor fungierenden HS-eigenen Gruppen sind wichtige Komponenten für die Charakteristik der HS-Fluoreszenz. Die Löschung der intrinsischen Fluoreszenz durch Metallkomplexierung ist demnach auch das Resultat der veränderten konformativen Freiheit der HS durch die gebundenen Metallionen. Es zeigte sich, dass abhängig vom Metallion sowohl Löschung als auch Verstärkung der intrinsischen HS-Fluoreszenz beobachtet werden kann. Als extrinsische Lumineszenzsonden mit wohl-charakterisierten photophysikalischen Eigenschaften wurden polyzyklische aromatische Kohlenwasserstoffe und Lanthanoid-Ionen eingesetzt. Durch Untersuchungen bei sehr niedrigen Temperaturen (10 K) konnte erstmals die Mikroumgebung von an HS gebundenen hydrophoben Xenobiotika untersucht werden. Im Vergleich mit Raumtemperaturexperimenten konnte gezeigt werden, dass hydrophobe Xenobiotika an HS-gebunden in einer Mikroumgebung, die in ihrer Polarität analog zu kurzkettigen Alkoholen ist, vorliegen. Für den Fall der Metallkomplexierung wurden Energietransferprozesse zwischen HS und Lanthanoidionen bzw. zwischen verschiedenen, gebundenen Lanthanoidionen untersucht. Basierend auf diesen Messungen können Aussagen über die beteiligten elektronischen Zustände der HS einerseits und Entfernungen von Metallbindungsstellen in HS selbst angeben werden. Es ist dabei zu beachten, dass die Experimente in Lösung bei realen Konzentrationen durchgeführt wurden. Aus Messung der Energietransferraten können direkte Aussagen über Konformationsänderungen bzw. Aggregationsprozesse von HS abgeleitet werden. N2 - Transport and fate of xenobiotics in the environment, especially in water and soil, are of utmost importance for life on earth. A major reaction partner for xenobiotics in the environment are humic substances (HS). HS are degradation products of plant and animal tissue, which are formed in a combination of subsequent chemical and/or biochemical processes. Because of the complex history of their origin HS are extremely heterogeneous mixtures of different compounds. Consequently, they posses a great variety of interaction capabilities with various xenobiotics. The investigations of the fundamental interaction mechanisms between HS and xenobiotics make high demands on the analytical techniques used. Especially spectroscopic techniques are promising for the investigation of interaction mechanisms in complex systems. Luminescence spectroscopy has the great advantage of outstanding sensitivity and of multidimensionality, which in principle allows the investigation of HS under environmental relevant conditions. For the characterisation of interaction processes of HS with xenobiotics the intrinsic fluorescence of HS as well as the luminescence of extrinsic probes can be used. The intrinsic HS fluorescence is determined by the molecular structure as well as the connection of the basic fluorophores. Conformational freedom as well as the presence of energy accepting groups in the neighbourhood of the fluorophores are highly important for the overall intrinsic HS fluorescence. The presence of metal ions can either quench or enhance the intrinsic HS fluorescence, which depends on the metal ion as well as on the origin of the HS investigated. While in most cases Al3+ ions enhance the intrinsic HS fluorescence, Ln3+ ions induce a fluorescence quenching. Polycyclic aromatic hydrocarbons were used as extrinsic fluorescence probes in order to characterize the interaction of HS and hydrophobic organic xenobiotics. In investigations at ultra-low temperatures (10 K) it could be shown that pyrene is bound in a HS microenvironment with an polarity which resembles that of small alcohols (e.g., butanol). In case of metal complexation, the lanthanide ions Eu3+ and Tb3+ were used as luminescence probes. Due to the outstanding luminescence properties of those ions, information about metal binding sites in HS were obtained. Based on the measurements of intramolecular and intermolecular energy transfer processes average distances of metal binding sites were deduced. KW - Fluoreszenz KW - Huminstoffe KW - Lanthanoide KW - Huminstoffe KW - Fluoreszenz KW - Lanthanoide KW - Resonanzenergietransfer KW - Lumineszenzsonden KW - Fluorescence KW - humic substances KW - resonance energy transfer KW - luminescence probes KW - lanthanides Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-6066 ER - TY - GEN A1 - Schuler, Benjamin A1 - Lipman, Everett A. A1 - Steinbach, Peter J. A1 - Kumke, Michael Uwe A1 - Eaton, William A. T1 - Polyproline and the "spectroscopic ruler" revisited with single-molecule fluorescence N2 - To determine whether Förster resonance energy transfer (FRET) measurements can provide quantitative distance information in single-molecule fluorescence experiments on polypeptides, we measured FRET efficiency distributions for donor and acceptor dyes attached to the ends of freely diffusing polyproline molecules of various lengths. The observed mean FRET efficiencies agree with those determined from ensemble lifetime measurements but differ considerably from the values expected from Förster theory, with polyproline treated as a rigid rod. At donor–acceptor distances much less than the Förster radius R0, the observed efficiencies are lower than predicted, whereas at distances comparable to and greater than R0, they are much higher. Two possible contributions to the former are incomplete orientational averaging during the donor lifetime and, because of the large size of the dyes, breakdown of the point-dipole approximation assumed in Förster theory. End-to-end distance distributions and correlation times obtained from Langevin molecular dynamics simulations suggest that the differences for the longer polyproline peptides can be explained by chain bending, which considerably shortens the donor–acceptor distances. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 008 KW - Förster resonance energy transfer KW - molecular dynamics KW - polypeptide KW - FRET Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-12229 ER - TY - GEN A1 - Engelhard, Sonja A1 - Kumke, Michael Uwe A1 - Löhmannsröben, Hans-Gerd T1 - OPQS – optical process and quality sensing : exemplary applications in the beerbrewing and polyurethane foaming processes N2 - Optical methods play an important role in process analytical technologies (PAT). Four examples of optical process and quality sensing (OPQS) are presented, which are based on three important experimental techniques: near-infrared absorption, luminescence quenching, and a novel method, photon density wave (PDW) spectroscopy. These are used to evaluate four process and quality parameters related to beer brewing and polyurethane (PU) foaming processes: the ethanol content and the oxygen (O2) content in beer, the biomass in a bioreactor, and the cellular structures of PU foam produced in a pilot production plant. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 004 KW - process analytical technology KW - beer KW - biomass KW - foam analysis KW - NIR spectroscopy KW - fluorescence quenching KW - photon density wave spectroscopy Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-12191 ER - TY - GEN A1 - Dosche, Carsten A1 - Kumke, Michael Uwe A1 - Ariese, F. A1 - Bader, Arjen N. A1 - Gooijer, C. A1 - Dosa, P. I. A1 - Han, S. A1 - Miljanic, O. S. A1 - Vollhardt, K. Peter C. A1 - Puchta, R. A1 - Eikema Hommes, N. J. R. van T1 - Shpol’skii spectroscopy and vibrational analysis of [N]phenylenes N2 - Vibrationally resolved fluorescence spectra of four angular [N]phenylenes were recorded with laser excited Shpol’skii spectroscopy (LESS) in an n-octane matrix at 10 K. In general, the same vibrational frequencies were observed in the fluorescence excitation and emission spectra, indicating that the geometries of ground and electronically excited state are very similar. Because of intensity borrowing from the S2 state, vibrations of two different symmetries were observed in the fluorescence excitation spectra of angular [3]phenylene and zig-zag[5]phenylene. This finding allowed the location of the S2 state for these compounds. DFT calculations(RB3LYP/6-31G*) of the ground state vibrational frequencies were made. The calculated vibrational modes were in reasonably good agreement with the experimental data. A new very low-frequency vibration of approximately 100 cm-1 was predicted and experimentally confirmed for all [N]phenylenes investigated. This vibration seems to be unique for [N]phenylenes and is attributed to an in-plane movement of the carbon backbone. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 024 Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13075 ER - TY - GEN A1 - Frimmel, Fritz Hartmann A1 - Kumke, Michael Uwe T1 - Optische Parameter zur Stoffcharakterisierung vom Trinkwasser bis zum Abwasser N2 - Die Anwendung von optischen Parametern zur Stoffcharakterisierung wird diskutiert. Dabei ist der Schwerpunkt der Diskussion auf absorptions- und fluoreszenzspektroskopische Methoden gesetzt. Beide Methoden können schnell und zuverlässig – auch im on-line Betrieb – eingesetzt werden. Der Beitrag soll einen Überblick über die grundlegenden Möglichkeiten der Anwendung beider Methoden geben. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 025 KW - Absorptionsspektroskopie KW - SAK KW - Fluoreszenzspektroskopie KW - Summenparameter KW - Huminstoffe KW - polyzyklische aromatische Kohlenwasserstoffe Y1 - 1998 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13088 ER - TY - GEN A1 - Kumke, Michael Uwe A1 - Frimmel, Fritz Hartmann T1 - Stationary and time-resolved fluorescence for humic substances characterization N2 - Steady-state and time-resolved fluorescence methods were applied to investigate the fluorescence properties of humic substances of different origins. Using standard 2D emission and total luminescence spectra, fluorescence maxima, the width of the fluorescence band and a relative fluorescence quantum efficiency were determined. Different trends for fulvic acids and humic acids were observed indicating differences in the heterogeneity of the sample fractions. The complexity of the fluorescence decay of humic substances is discussed and compared to simple model compounds. The effect of oxidation of humic substances on their fluorescence properties is discussed as well. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 014 Y1 - 2002 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-12353 ER - TY - GEN A1 - Billard, Isabelle A1 - Ansoborlo, Eric A1 - Apperson, Kathleen A1 - Arpigny, Sylvie A1 - Azenha, M. Emilia A1 - Birch, David A1 - Bros, Pascal A1 - Burrows, Hugh D. A1 - Choppin, Gregory A1 - Kumke, Michael Uwe T1 - Aqueous solutions of Uranium(VI) as studied by time-resolved emission spectroscopy : a Round-Robin Test N2 - Results of an inter-laboratory round-robin study of the application of time-resolved emission spectroscopy (TRES) to the speciation of uranium(VI) in aqueous media are presented. The round-robin study involved 13 independent laboratories, using various instrumentation and data analysis methods. Samples were prepared based on appropriate speciation diagrams and, in general, were found to be chemically stable for at least six months. Four different types of aqueous uranyl solutions were studied: (1) acidic medium where UO22+aq is the single emitting species, (2) uranyl in the presence of fluoride ions, (3) uranyl in the presence of sulfate ions, and (4) uranyl in aqueous solutions at different pH, promoting the formation of hydrolyzed species. Results between the laboratories are compared in terms of the number of decay components, luminescence lifetimes, and spectral band positions. The successes and limitations of TRES in uranyl analysis and speciation in aqueous solutions are discussed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 005 KW - uranium (VI) KW - intercomparison KW - speciation Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-12318 ER - TY - GEN A1 - Dosche, Carsten A1 - Kumke, Michael Uwe A1 - Löhmannsröben, Hans-Gerd A1 - Ariese, F. A1 - Bader, Arjen N. A1 - Gooijer, C. A1 - Miljanic, O. S. A1 - Iwamoto, M. A1 - Vollhardt, K. Peter C. A1 - Puchta, R. ; van Eikema Hommes, N. J. R. T1 - Deuteration effects on the vibronic structure of the fluorescence spectra and the internal conversion rates of triangular [4]Phenylene N2 - Deuteration effects on the vibronic structure of the emission and excitation spectra of triangular [4]phenylene (D3h[4]phenylene) were studied using laser-excited Shpolskii spectroscopy (LESS) in an octane matrix at 4.2 K. For correct assignment of the vibrational modes, the experimental results were compared with calculated frequencies (B3LYP/6-31G*). CH vibrations were identified by their characteristic isotopic shifts in the spectra of deuterated triangular [4]phenylenes. Two CC stretching modes, at 100 cm–1 and 1176 cm–1, suitable as probes for bond strength changes in the excited state, were identified. The isotope effect on the internal conversion rates of triangular [4]phenylene was evaluated from measurements of temperature dependent lifetime. Isotope dependency and the magnitude of the internal conversion rates indicate that internal conversion in triangular [4]phenylene is most likely induced by CH vibrations. The results obtained by LESS and lifetime measurements were compared with PM3 PECI calculations of the excited state structure. The theoretical results and the relation between ground and excited state vibration energies of the 1176 cm–1 probe vibration indicate a reduction of bond alternation of the central cyclohexatriene ring in the excited state. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 002 Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-11881 ER - TY - JOUR A1 - Pilar Yeste, Maria A1 - Carlos Hernandez-Garrido, Juan A1 - Kumke, Michael Uwe A1 - Alvarado, Sarah A1 - Cauqui, Miguel Angel A1 - Juan Calvino, Jose A1 - Primus, Philipp-Alexander T1 - Low-temperature growth of reactive pyrochlore nanostructures on Zirconia-supported ceria BT - implications for improved catalytic behavior JF - ACS applied nano materials N2 - The use of a catalyst support for the design of nanoscale heterogeneous catalysts based on cerium oxide offers vast possibilities for future catalyst development, particularly with regard to an increased focus on the use of renewable biogas and an emerging hydrogen economy. In this study, zirconia-supported ceria catalysts were synthesized, activated by using different thermochemical treatments, and characterized by way of temperature-programmed reduction (TPR), oxygen storage capacity, Xray diffraction, electron microscopy, and luminescence spectroscopy using Eu3+ as a spectroscopic probe. Through reduction-oxidation pretreatment routines, reactive pyrochlore structures were created at temperatures as low as 600 degrees C and identified through TPR and electron microscopy experiments. A structural relationship and alignment of the crystal planes is revealed in high-resolution scanning transmission electron microscopy experiments through the digital diffraction patterns. Low-temperature pretreatment induces the formation of reactive pyrochlore domains under retention of the surface area of the catalyst system, and no further morphological changes are detected. Furthermore, the formation of pyrochlore domains achieved through severe reduction and mild reoxidation (SRMO) treatments is reversible. Over multiple alternating SRMO and severe reduction and severe reoxidation (SRSO) treatments, europium spectroscopy and TPR results indicate that pyrochlore structures are recreated over consecutive treatments, whenever the mild oxidation step at 500 degrees C is the last treatment (SRMO, SRMO-SRSO-SRMO, etc.). KW - pyrochlore KW - nanocomposite KW - ceria KW - zirconia KW - supported catalyst KW - oxygen KW - storage capacity Y1 - 2022 U6 - https://doi.org/10.1021/acsanm.2c00416 SN - 2574-0970 VL - 5 IS - 5 SP - 6316 EP - 6326 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Primus, Philipp-Alexander A1 - Menski, Antonia A1 - Yeste, Maria Pilar A1 - Cauqui, Miguel Angel A1 - Kumke, Michael Uwe T1 - Fluorescence Line-Narrowing Spectroscopy as a Tool to Monitor Phase Transitions and Phase Separation in Efficient Nanocrystalline CexZr1-xO2:Eu3+ Catalyst Materials JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Despite the wide range of industrial applications for ceria-zirconia mixed oxides (CexZr1-xO2), the complex correlation between their atomic structure and catalytic performance is still under debate. Catalytically interesting CexZr1-xO2 nanomaterials can form homogeneous solid solutions and, depending on the composition, show phase separation under the formation of small domains. The characterization of homogeneity and atomic structure of these materials remains a major challenge. High-resolution emission spectroscopy recorded under cryogenic conditions using Eu3+ as a structural probe in doped CeZrO2 nanoparticles offers an effective way to identify the different atomic environments of the Eu3+ dopants and, subsequently, to monitor structural parameters of the ceria-zirconia mixed oxides. It is found that, in stoichiometric CeZrO2:Eu3+, phase separation occurs at elevated temperatures beginning with the gradual formation of (pseudo)cubic crystallites in the amorphous materials at 500 degrees C and a sudden phase separation into tetragonal, zirconia-rich and cubic, ceria-rich domains over 900 degrees C. The presented technique allows us to easily monitor subtle changes even in amorphous, high surface area samples, yielding structural information not accessible by conventional techniques such as X-ray diffraction (XRD) and Raman. Moreover, in reference experiments investigating the reducibility of largely unordered Ce0.2Zr0.8O2:Eu3+, the main reduction peak in temperature-programmed reduction measurements appeared at exceptionally low temperatures below 200 degrees C, thus suggesting the outstanding potential of this oxide to activate catalytic oxidation reactions. This effect was found to be dependent on the amount of Eu3+ dopant introduced into the CeZrO2 matrix as well as to be connected to the atomic structure of the catalyst material. Y1 - 2015 U6 - https://doi.org/10.1021/acs.jpcc.5b01271 SN - 1932-7447 VL - 119 IS - 19 SP - 10682 EP - 10692 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Primus, Philipp-Alexander A1 - Ritschel, Thomas A1 - Sigueenza, Pilar Y. A1 - Cauqui, Miguel Angel A1 - Hernandez-Garrido, Juan Carlos A1 - Kumke, Michael Uwe T1 - High-resolution spectroscopy of europium-doped ceria as a tool to correlate structure and catalytic activity JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Site-selective emission spectra of Eu3+-doped CeO2 nanoparticles up to the D-5(0) - F-7(5) transition were recorded under cryogenic conditions to identify the local structure around the Eu3+ dopants in ceria. It is found that pretreatment conditions are crucial for the redistribution of dopants from a broad variety of environments to six well-defined lattice sites. The influence of the dopant and the host structure on the catalytic activity was investigated. A relationship between structure and reactivity is discussed. It is shown that oxygen transport is most efficient in particles with a pronounced amorphous character. Y1 - 2014 U6 - https://doi.org/10.1021/jp505467r SN - 1932-7447 VL - 118 IS - 40 SP - 23349 EP - 23360 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - López de Guereñu, Anna A1 - Bastian, Philipp A1 - Wessig, Pablo A1 - John, Leonard A1 - Kumke, Michael Uwe T1 - Energy transfer between tm-doped upconverting nanoparticles and a small organic dye with large stokes shift T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Lanthanide-doped upconverting nanoparticles (UCNP) are being extensively studied for bioapplications due to their unique photoluminescence properties and low toxicity. Interest in RET applications involving UCNP is also increasing, but due to factors such as large sizes, ion emission distributions within the particles, and complicated energy transfer processes within the UCNP, there are still many questions to be answered. In this study, four types of core and core-shell NaYF4-based UCNP co-doped with Yb3+ and Tm3+ as sensitizer and activator, respectively, were investigated as donors for the Methyl 5-(8-decanoylbenzo[1,2-d:4,5-d ']bis([1,3]dioxole)-4-yl)-5-oxopentanoate (DBD-6) dye. The possibility of resonance energy transfer (RET) between UCNP and the DBD-6 attached to their surface was demonstrated based on the comparison of luminescence intensities, band ratios, and decay kinetics. The architecture of UCNP influenced both the luminescence properties and the energy transfer to the dye: UCNP with an inert shell were the brightest, but their RET efficiency was the lowest (17%). Nanoparticles with Tm3+ only in the shell have revealed the highest RET efficiencies (up to 51%) despite the compromised luminescence due to surface quenching. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 961 KW - resonance energy transfer KW - DBD dye KW - core shell UCNP KW - time-resolved luminescence Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472240 SN - 1866-8372 IS - 961 ER - TY - JOUR A1 - Haubitz, Toni A1 - John, Leonard A1 - Freyse, Daniel A1 - Wessig, Pablo A1 - Kumke, Michael Uwe T1 - Investigating the Sulfur "Twist" on the Photophysics of DBD Dyes JF - The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment & general theory N2 - The so-called DBD ([1,3]dioxolo[4,5-f][1,3]benzodioxole) dyes are a new class of fluorescent dyes, with tunable photophysical properties like absorption, fluorescence lifetime, and Stokes shift. With the development of sulfur based DBDs, this dye class is extended even further for possible applications in spectroscopy and microscopy. In this paper we are investigating the basic photophysical properties and their implications for future applications for S-4-DBD as well as O-4-DBD. On the basis of time-resolved laser fluorescence spectroscopy, transient absorption spectroscopy, and UV/vis-spectroscopy, we determined the rate constants of the radiative and nonradiative deactivation processes as well as the energy of respective electronic states involved in the electronic deactivation of S-4-DBD and of O-4-DBD. For S-4-DBD we unraveled the triplet formation with intersystem crossing quantum yields of up to 80%. By TD-DFT calculations we estimated a triplet energy of around 13500-14700 cm(-1) depending on the DBD dye and solvent. Through solvent dependent measurements, we found quadrupole moments in the range of 2 B. Y1 - 2020 U6 - https://doi.org/10.1021/acs.jpca.0c01880 SN - 1089-5639 SN - 1520-5215 VL - 124 IS - 22 SP - 4345 EP - 4353 PB - American Chemical Society CY - Washington ER -