TY - JOUR A1 - Bell, M. J. A1 - Jones, E. A1 - Smith, J. A1 - Smith, P. A1 - Yeluripati, J. A1 - Augustin, Jürgen A1 - Juszczak, R. A1 - Olejnik, J. A1 - Sommer, Michael T1 - Simulation of soil nitrogen, nitrous oxide emissions and mitigation scenarios at 3 European cropland sites using the ECOSSE model JF - Nutrient cycling in agroecosystems N2 - The global warming potential of nitrous oxide (N2O) and its long atmospheric lifetime mean its presence in the atmosphere is of major concern, and that methods are required to measure and reduce emissions. Large spatial and temporal variations means, however, that simple extrapolation of measured data is inappropriate, and that other methods of quantification are required. Although process-based models have been developed to simulate these emissions, they often require a large amount of input data that is not available at a regional scale, making regional and global emission estimates difficult to achieve. The spatial extent of organic soils means that quantification of emissions from these soil types is also required, but will not be achievable using a process-based model that has not been developed to simulate soil water contents above field capacity or organic soils. The ECOSSE model was developed to overcome these limitations, and with a requirement for only input data that is readily available at a regional scale, it can be used to quantify regional emissions and directly inform land-use change decisions. ECOSSE includes the major processes of nitrogen (N) turnover, with material being exchanged between pools of SOM at rates modified by temperature, soil moisture, soil pH and crop cover. Evaluation of its performance at site-scale is presented to demonstrate its ability to adequately simulate soil N contents and N2O emissions from cropland soils in Europe. Mitigation scenarios and sensitivity analyses are also presented to demonstrate how ECOSSE can be used to estimate the impact of future climate and land-use change on N2O emissions. KW - Soil N2O emissions KW - Process-based models KW - Land-use KW - Climate change Y1 - 2012 U6 - https://doi.org/10.1007/s10705-011-9479-4 SN - 1385-1314 VL - 92 IS - 2 SP - 161 EP - 181 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Calitri, Francesca A1 - Sommer, Michael A1 - Norton, Kevin A1 - Temme, Arnaud A1 - Brandova, Dagmar A1 - Portes, Raquel A1 - Christl, Marcus A1 - Ketterer, Mike E. A1 - Egli, Markus T1 - Tracing the temporal evolution of soil redistribution rates in an agricultural landscape using Pu239+240 and Be-10 JF - Earth surface processes and landforms : the journal of the British Geomorphological Research Group N2 - Two principal groups of processes shape mass fluxes from and into a soil: vertical profile development and lateral soil redistribution. Periods having predominantly progressive soil forming processes (soil profile development) alternate with periods having predominantly regressive processes (erosion). As a result, short‐term soil redistribution – years to decades – can differ substantially from long‐term soil redistribution; i.e. centuries to millennia. However, the quantification of these processes is difficult and consequently their rates are poorly understood. To assess the competing roles of erosion and deposition we determined short‐ and long‐term soil redistribution rates in a formerly glaciated area of the Uckermark, northeast Germany. We compared short‐term erosion or accumulation rates using plutonium‐239 and ‐240 (239+240Pu) and long‐term rates using both in situ and meteoric cosmogenic beryllium‐10 (10Be). Three characteristic process domains have been analysed in detail: a flat landscape position having no erosion/deposition, an erosion‐dominated mid‐slope, and a deposition‐dominated lower‐slope site. We show that the short‐term mass erosion and accumulation rates are about one order of magnitude higher than long‐term redistribution rates. Both, in situ and meteoric 10Be provide comparable results. Depth functions, and therefore not only an average value of the topsoil, give the most meaningful rates. The long‐term soil redistribution rates were in the range of −2.1 t ha‐1 yr‐1 (erosion) and +0.26 t ha‐1 yr‐1 (accumulation) whereas the short‐term erosion rates indicated strong erosion of up to 25 t ha‐1 yr‐1 and accumulation of 7.6 t ha‐1 yr‐1. Our multi‐isotope method identifies periods of erosion and deposition, confirming the ‘time‐split approach’ of distinct different phases (progressive/regressive) in soil evolution. With such an approach, temporally‐changing processes can be disentangled, which allows the identification of both the dimensions of and the increase in soil erosion due to human influence KW - soil erosion KW - Be-10 KW - Pu239+240 KW - temporal evolution KW - moraine landscape KW - agricultural soils Y1 - 2019 U6 - https://doi.org/10.1002/esp.4612 SN - 0197-9337 SN - 1096-9837 VL - 44 IS - 9 SP - 1783 EP - 1798 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Calitri, Francesca A1 - Sommer, Michael A1 - van der Meij, Marijn W. A1 - Egli, Markus T1 - Soil erosion along a transect in a forested catchment: recent or ancient processes? JF - Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution N2 - Forested areas are assumed not to be influenced by erosion processes. However, forest soils of Northern Germany in a hummocky ground moraine landscape can sometimes exhibit a very shallow thickness on crest positions and buried soils on slope positions. The question consequently is: Are these on-going or ancient erosional and depositional processes? Plutonium isotopes act as soil erosion/deposition tracers for recent (last few decades) processes. Here, we quantified the 239+240PU inventories in a small, forested catchment (ancient forest "Melzower Forst", deciduous trees), which is characterised by a hummocky terrain including a kettle hole. Soil development depths (depth to C horizon) and 239+240PU inventories along a catena of sixteen different profiles were determined and correlated to relief parameters. Moreover, we compared different modelling approaches to derive erosion rates from Pu data.
We find a strong relationship between soil development depths, distance-to-sink and topography along the catena. Fully developed Retisols (thicknesses > 1 m) in the colluvium overlay old land surfaces as documented by fossil Ah horizons. However, we found no relationship of Pu-based erosion rates to any relief parameter. Instead, 239+240PU inventories showed a very high local, spatial variability (36-70 Bq m(-2)). Low annual rainfall, spatially distributed interception and stem flow might explain the high variability of the 239+240PU inventories, giving rise to a patchy input pattern. Different models resulted in quite similar erosion and deposition rates (max: -5 t ha(-1) yr(-1) to +7.3 t ha(-1) yr(-1)). Although some rates are rather high, the magnitude of soil erosion and deposition - in terms of soil thickness change - is negligible during the last 55 years. The partially high values are an effect of the patchy Pu deposition on the forest floor. This forest has been protected for at least 240 years. Therefore rather natural events and anthropogenic activities during medieval times or even earlier must have caused the observed soil pattern, which documents strong erosion and deposition processes. KW - Soil erosion KW - 239+240 Plutonium KW - Forest KW - Moraine landscape KW - Soil catena Y1 - 2020 U6 - https://doi.org/10.1016/j.catena.2020.104683 SN - 0341-8162 SN - 1872-6887 VL - 194 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Chang, Dan A1 - Knapp, Michael A1 - Enk, Jacob A1 - Lippold, Sebastian A1 - Kircher, Martin A1 - Lister, Adrian M. A1 - MacPhee, Ross D. E. A1 - Widga, Christopher A1 - Czechowski, Paul A1 - Sommer, Robert A1 - Hodges, Emily A1 - Stümpel, Nikolaus A1 - Barnes, Ian A1 - Dalén, Love A1 - Derevianko, Anatoly A1 - Germonpré, Mietje A1 - Hillebrand-Voiculescu, Alexandra A1 - Constantin, Silviu A1 - Kuznetsova, Tatyana A1 - Mol, Dick A1 - Rathgeber, Thomas A1 - Rosendahl, Wilfried A1 - Tikhonov, Alexey N. A1 - Willerslev, Eske A1 - Hannon, Greg A1 - Lalueza i Fox, Carles A1 - Joger, Ulrich A1 - Poinar, Hendrik N. A1 - Hofreiter, Michael A1 - Shapiro, Beth T1 - The evolutionary and phylogeographic history of woolly mammoths BT - a comprehensive mitogenomic analysis JF - Scientific reports N2 - Near the end of the Pleistocene epoch, populations of the woolly mammoth (Mammuthus primigenius) were distributed across parts of three continents, from western Europe and northern Asia through Beringia to the Atlantic seaboard of North America. Nonetheless, questions about the connectivity and temporal continuity of mammoth populations and species remain unanswered. We use a combination of targeted enrichment and high-throughput sequencing to assemble and interpret a data set of 143 mammoth mitochondrial genomes, sampled from fossils recovered from across their Holarctic range. Our dataset includes 54 previously unpublished mitochondrial genomes and significantly increases the coverage of the Eurasian range of the species. The resulting global phylogeny confirms that the Late Pleistocene mammoth population comprised three distinct mitochondrial lineages that began to diverge ~1.0–2.0 million years ago (Ma). We also find that mammoth mitochondrial lineages were strongly geographically partitioned throughout the Pleistocene. In combination, our genetic results and the pattern of morphological variation in time and space suggest that male-mediated gene flow, rather than large-scale dispersals, was important in the Pleistocene evolutionary history of mammoths. Y1 - 2017 U6 - https://doi.org/10.1038/srep44585 SN - 2045-2322 VL - 7 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Doetterl, Sebastian A1 - Berhe, Asmeret Asefaw A1 - Nadeu, Elisabet A1 - Wang, Zhengang A1 - Sommer, Michael A1 - Fiener, Peter T1 - Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes JF - Earth science reviews : the international geological journal bridging the gap between research articles and textbooks N2 - The role of soil erosion in terrestrial carbon (C) sequestration and release remains one of the most important uncertainties in our attempts to determine the potential of soils to mediate climate change. Despite its widely recognized importance for terrestrial C sequestration, to date, no Earth System Model (ESM) implements soil erosion effects on carbon cycling in sufficient detail. So far, available studies have mostly investigated the magnitude of erosional C transport and in-situ measurements of vertical C fluxes on the catchment or regional scale. Recognizing the need to adequately represent C erosion processes and controls in ESMs, we provide a comprehensive cross-disciplinary review on lateral C redistribution in the landscape and discuss the implications for bio-geochemical cycling of carbon. We present current knowledge on the role of erosional C distribution in controlling the stabilization and release of C in soils, taking into consideration the important geomorphic, ecological, hydrologic, pedologic and micro-climatic processes and controls that affect soil organic carbon (SOC) stock, fluxes, and persistence in dynamic landscapes. Further, we provide an overview on latest experimental and modelling approaches that are being used to investigate the role of erosion in the carbon cycle. Finally, to advance our understanding of the role of soil redistribution in biogeochemical cycles of essential elements, we discuss the most promising topics for future research in this field. (C) 2015 Elsevier B.V. All rights reserved. KW - Soil erosion KW - Soil deposition KW - Carbon redistribution KW - Terrestrial C sink Y1 - 2016 U6 - https://doi.org/10.1016/j.earscirev.2015.12.005 SN - 0012-8252 SN - 1872-6828 VL - 154 SP - 102 EP - 122 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ehrmann, Otto A1 - Puppe, Daniel A1 - Wanner, Manfred A1 - Kaczorek, Danuta A1 - Sommer, Michael T1 - Testate amoebae in 31 mature forest ecosystems - Densities and micro-distribution in soils JF - European journal of protistology N2 - We studied testate amoebae and possible correlated abiotic factors in soils of 31 mature forest ecosystems using an easily applicable and spatially explicit method. Simple counting on soil thin-sections with a light microscope resulted in amoeba densities comparable to previously reported values, i.e. 0.1 x 10(8) to 11.5 x 10(8) individuals m(-2) (upper 3 cm of soil). Soil moisture and soil acidity seem to be correlated with amoeba densities. At sites of moderate soil moisture regimes (SMR 2-7) we found higher densities of testate amoebae at pH < 4.5. At wetter sites (SMR >= 8) higher individual densities were recorded also at less acidic sites. The in situ description of amoebae, based on the analysis of a complete soil thin-section, showed a relatively uniform spatial micro-distribution throughout the organic and mineral soil horizons (no testate amoeba clusters). We discuss the pros and cons of the soil thin-section method and suggest it as an additional tool to improve knowledge of the spatial micro-distribution of testate amoebae. KW - Microhabitats KW - Soil thin-section KW - Soil moisture regimes KW - Soil reaction Y1 - 2012 U6 - https://doi.org/10.1016/j.ejop.2012.01.003 SN - 0932-4739 VL - 48 IS - 3 SP - 161 EP - 168 PB - Elsevier CY - Jena ER - TY - JOUR A1 - Filipovic, Vilim A1 - Gerke, Horst H. A1 - Filipovic, Lana A1 - Sommer, Michael T1 - Quantifying subsurface lateral flow along sloping horizon boundaries in soil profiles of a hummocky ground moraine JF - Vadose zone journal N2 - Subsurface lateral flow in hillslope soils depends on lower permeability or texture-contrasting soil horizons. In the arable hummocky soil landscape, erosion processes caused glacial till appearance closer to the soil surface at upslope positions. The objective of this work was to quantify the potential for subsurface lateral flow depending on the erosion-affected spatial hydropedological complexity. The eroded Haplic Luvisol profile was studied due to the presence of a relatively dense C horizon that varied in depth, thickness, and sloping angle. A two-dimensional numerical modeling and sensitivity analysis for the saturated hydraulic conductivity (K-s) of the C horizon and the depth to C horizon (i.e., soil solum thickness) was performed for rainstorms in 2011 and 2012 using HYDRUS-2D. A K-s value of <2.5 cm d(-1) for the C horizon was required for lateral flow initiation. Lateral flow was (i) increasing with decreasing solum thickness, indicating an erosion-induced feedback on subsurface lateral flow, and (ii) dependent on the soil moisture regime prior to rainstorms. The effect of lateral flow on the movement of a conservative tracer was simulated in the form of a "virtual experiment". Simulation scenarios revealed only a relatively small lateral shift of the tracer plume caused by a local decoupling of water (already lateral) from subsequent tracer movement (still vertical). Longer term simulations suggested that, for the present conditions, lateral flow was limited mostly to occasional summer storm events. Even without considering preferential flow contribution to lateral flow, highly complex hydropedologic interactions are present in erosion-affected heterogeneous soil profiles. Y1 - 2016 U6 - https://doi.org/10.2136/vzj2017.05.0106 SN - 1539-1663 VL - 17 IS - 1 PB - Soil Science Society of America CY - Madison ER - TY - JOUR A1 - Frick, Daniel Alexander A1 - Schüßler, Jan Arne A1 - Sommer, Michael A1 - von Blanckenburg, Friedhelm T1 - Laser Ablation In Situ Silicon Stable Isotope Analysis of Phytoliths JF - Geostandards and geoanalytical research N2 - Silicon is a beneficial element for many plants and is deposited in plant tissue as amorphous bio-opal called phytoliths. The biochemical processes of silicon uptake and precipitation induce isotope fractionation: the mass-dependent shift in the relative abundances of the stable isotopes of silicon. At the bulk scale, delta Si-30 ratios span from -2 to +6 parts per thousand. To further constrain these variations in situ, at the scale of individual phytolith fragments, we used femtosecond laser ablation multi-collector inductively coupled plasma-mass spectrometry (fsLA-MC-ICP-MS). A variety of phytoliths from grasses, trees and ferns were prepared from plant tissue or extracted from soil. Good agreement between phytolith delta Si-30 ratios obtained by bulk solution MC-ICP-MS analysis and in situ isotope ratios from fsLA-MC-ICP-MS validates the method. Bulk solution analyses result in at least twofold better precision for delta Si-30 (2s on reference materials <= 0.11 parts per thousand) over that found for the means of in situ analyses (2s typically <= 0.24 parts per thousand). We find that bushgrass, common reed and horsetail show large internal variations up to 2 parts per thousand in delta Si-30, reflecting the various pathways of silicon from soil to deposition. Femtosecond laser ablation provides a means to identify the underlying processes involved in the formation of phytoliths using silicon isotope ratios. KW - In situ silicon isotope ratio analysis KW - phytolith KW - laser ablation inductively coupled plasma-mass spectrometry KW - biogenic silica Y1 - 2018 U6 - https://doi.org/10.1111/ggr.12243 SN - 1639-4488 SN - 1751-908X VL - 43 IS - 1 SP - 77 EP - 91 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Funk, Roger A1 - Busse, Jaqueline A1 - Siegmund, Nicole A1 - Sommer, Michael A1 - Iturri, Laura Antonela A1 - Panebianco, Juan E. A1 - Avecilla, Fernando A1 - Buschiazzo, Daniel T1 - Phytoliths in particulate matter released by wind erosion on arable land in La Pampa, Argentina JF - Frontiers in environmental science N2 - Silicon (Si) is considered a beneficial element in plant nutrition, but its importance on ecosystems goes far beyond that. Various forms of silicon are found in soils, of which the phytogenic pool plays a decisive role due to its good availability. This Si returns to the soil through the decomposition of plant residues, where they then participate in the further cycle as biogenic amorphous silica (bASi) or so-called phytoliths. These have a high affinity for water, so that the water holding capacity and water availability of soils can be increased even by small amounts of ASi. Agricultural land is a considerable global dust source, and dust samples from arable land have shown in cloud formation experiments a several times higher ice nucleation activity than pure mineral dust. Here, particle sizes in the particulate matter fractions (PM) are important, which can travel long distances and reach high altitudes in the atmosphere. Based on this, the research question was whether phytoliths could be detected in PM samples from wind erosion events, what are the main particle sizes of phytoliths and whether an initial quantification was possible.Measurements of PM concentrations were carried out at a wind erosion measuring field in the province La Pampa, Argentina. PM were sampled during five erosion events with Environmental Dust Monitors (EDM). After counting and classifying all particles with diameters between 0.3 and 32 mu m in the EDMs, they are collected on filters. The filters were analyzed by Scanning Electron Microscopy and Energy Dispersive X-Ray analysis (SEM-EDX) to investigate single or ensembles of particles regarding composition and possible origins.The analyses showed up to 8.3 per cent being phytoliths in the emitted dust and up to 25 per cent of organic origin. Particles of organic origin are mostly in the coarse dust fraction, whereas phytoliths are predominately transported in the finer dust fractions. Since phytoliths are both an important source of Si as a plant nutrient and are also involved in soil C fixation, their losses from arable land via dust emissions should be considered and its specific influence on atmospheric processes should be studied in detail in the future. KW - dust KW - dust composition KW - particulate matter KW - scanning electron microscope KW - (SEM) analysis KW - phytolith Y1 - 2022 U6 - https://doi.org/10.3389/fenvs.2022.969898 SN - 2296-665X VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Funk, Roger A1 - Li, Yong A1 - Hoffmann, Carsten A1 - Reiche, Matthias A1 - Zhang, Zhuodong A1 - Li, Junjie A1 - Sommer, Michael T1 - Using Cs-137 to estimate wind erosion and dust deposition on grassland in Inner Mongolia-selection of a reference site and description of the temporal variability JF - Plant and soil N2 - The aims of this study were to identify areas of wind erosion and dust deposition and to quantify the effects of different grazing intensities on soil redistribution rates in grasslands based on the Cs-137 technique. Because the method uses a reference inventory as threshold for erosion or deposition, the classification of any other site as source or sink for dust depends on the accurate selection of this reference site. Measurements of Cs-137 inventories and depth distributions were carried out at pasture sites with predominant species of Stipa grandis and Leymus chinensis which are grazed with different intensities. Additional measurements were made at arable land, plant-covered sand dunes and alluvial plains. Wind-induced soil erosion and dust deposition rates were calculated from Cs-137 inventories by means of the "Profile-Distribution" and the "Mass Balance II" models. The selection of the reference site was based on fluid dynamical and process-determining parameters. The chosen site should meet the following four conditions: (i) located at a summit position with obviously low deposition rates, (ii) sufficient vegetation cover to prevent wind erosion, (iii) plane to exclude water erosion and (iv) in the wind/dust shadow of a higher elevation. The measured reference inventory of Cs-137 was 1967(+/- 102) Bqm(-2) located at a summit position of moderately grazed Leymus chinensis steppe. The Cs-137 inventories at other sites ranged from 1330 Bqm(-2) at heavily grazed sites to 5119 Bqm(-2) at river deposits, representing annual average soil losses of up to 130 tkm(-2) and deposits of up to 540 tkm(-2), respectively. The calculated annual averages of dust depositions at ungrazed Leymus chinensis sites were related to the dust storm frequencies of the last 50 years resulting in a description of the temporal variability of annual dust depositions from about 154 tkm(-2) in the 1960s to 26 tkm(-2) at recent times. Based on this quantification already 80% of the total dust depositions can be related to the 20 years between the 1960s and the end of the 1970s and only 20% to the time between 1980 and 2001. Cs-137 technique is a promising method to assess the effect of grazing intensity and land use types on the spatial variability of wind-induced soil and dust redistribution processes in semi-arid grasslands. However, considerable efforts are needed to identify a reliable reference site, because erosion and deposition induced by wind may occur at the same places. The combination of the dust deposition rates derived from Cs-137 profile data with the dust storm frequencies is helpful for a better reconstruction of the temporal variability of dust deposition and wind erosion in this region. The calculated recent deposition rates of about 20 tkm(-2) are in good agreement with data of other authors. KW - Cs-137 KW - Grassland KW - Wind erosion KW - Dust deposition KW - Reference site Y1 - 2012 U6 - https://doi.org/10.1007/s11104-011-0964-y SN - 0032-079X VL - 351 IS - 1-2 SP - 293 EP - 307 PB - Springer CY - Dordrecht ER -