TY - JOUR A1 - Zwickel, Theresa A1 - Kahl, Sandra M. A1 - Klaffke, Horst A1 - Rychlik, Michael A1 - Müller, Marina E. H. T1 - Spotlight on the Underdogs-An Analysis of Underrepresented Alternaria Mycotoxins Formed Depending on Varying Substrate, Time and Temperature Conditions JF - Toxins N2 - Alternaria (A.) is a genus of widespread fungi capable of producing numerous, possibly health-endangering Alternaria toxins (ATs), which are usually not the focus of attention. The formation of ATs depends on the species and complex interactions of various environmental factors and is not fully understood. In this study the influence of temperature (7 degrees C, 25 degrees C), substrate (rice, wheat kernels) and incubation time (4, 7, and 14 days) on the production of thirteen ATs and three sulfoconjugated ATs by three different Alternaria isolates from the species groups A. tenuissima and A. infectoria was determined. High-performance liquid chromatography coupled with tandem mass spectrometry was used for quantification. Under nearly all conditions, tenuazonic acid was the most extensively produced toxin. At 25 degrees C and with increasing incubation time all toxins were formed in high amounts by the two A. tenuissima strains on both substrates with comparable mycotoxin profiles. However, for some of the toxins, stagnation or a decrease in production was observed from day 7 to 14. As opposed to the A. tenuissima strains, the A. infectoria strain only produced low amounts of ATs, but high concentrations of stemphyltoxin III. The results provide an essential insight into the quantitative in vitro AT formation under different environmental conditions, potentially transferable to different field and storage conditions. KW - Alternaria infectoria KW - A. tenuissima KW - mycotoxin profile KW - wheat KW - rice KW - Alternaria toxin sulfates KW - modified Alternaria toxins KW - altertoxins KW - altenuic acid KW - HPLC-MS/MS Y1 - 2016 U6 - https://doi.org/10.3390/toxins8110344 SN - 2072-6651 VL - 8 SP - 570 EP - 583 PB - MDPI CY - Basel ER - TY - GEN A1 - Zwickel, Theresa A1 - Kahl, Sandra M. A1 - Klaffke, Horst A1 - Rychlik, Michael A1 - Müller, Marina E. H. T1 - Spotlight on the underdogs BT - an analysis of underrepresented alternaria mycotoxins formed depending on varying substrate, time and temperature conditions N2 - Alternaria (A.) is a genus of widespread fungi capable of producing numerous, possibly health-endangering Alternaria toxins (ATs), which are usually not the focus of attention. The formation of ATs depends on the species and complex interactions of various environmental factors and is not fully understood. In this study the influence of temperature (7 °C, 25 °C), substrate (rice, wheat kernels) and incubation time (4, 7, and 14 days) on the production of thirteen ATs and three sulfoconjugated ATs by three different Alternaria isolates from the species groups A. tenuissima and A. infectoria was determined. High-performance liquid chromatography coupled with tandem mass spectrometry was used for quantification. Under nearly all conditions, tenuazonic acid was the most extensively produced toxin. At 25 °C and with increasing incubation time all toxins were formed in high amounts by the two A. tenuissima strains on both substrates with comparable mycotoxin profiles. However, for some of the toxins, stagnation or a decrease in production was observed from day 7 to 14. As opposed to the A. tenuissima strains, the A. infectoria strain only produced low amounts of ATs, but high concentrations of stemphyltoxin III. The results provide an essential insight into the quantitative in vitro AT formation under different environmental conditions, potentially transferable to different field and storage conditions T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 353 KW - Alternaria infectoria KW - A. tenuissima KW - mycotoxin profile KW - wheat KW - rice KW - Alternaria toxin sulfates KW - modified Alternaria toxins KW - altertoxins KW - altenuic acid KW - HPLC-MS/MS Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400438 ER - TY - JOUR A1 - Zwickel, Theresa A1 - Kahl, Sandra M. A1 - Rychlik, Michael A1 - Müller, Marina E. H. T1 - Chemotaxonomy of Mycotoxigenic Small-Spored Alternaria Fungi BT - Do Multitoxin Mixtures Act as an Indicator for Species Differentiation? JF - Frontiers in microbiology N2 - Necrotrophic as well as saprophytic small-spored Altemaria (A.) species are annually responsible for major losses of agricultural products, such as cereal crops, associated with the contamination of food and feedstuff with potential health-endangering Altemaria toxins. Knowledge of the metabolic capabilities of different species-groups to form mycotoxins is of importance for a reliable risk assessment. 93 Altemaria strains belonging to the four species groups Alternaria tenuissima, A. arborescens, A. altemata, and A. infectoria were isolated from winter wheat kernels harvested from fields in Germany and Russia and incubated under equal conditions. Chemical analysis by means of an HPLC-MS/MS multi-Alternaria-toxin-method showed that 95% of all strains were able to form at least one of the targeted 17 non-host specific Altemaria toxins. Simultaneous production of up to 15 (modified) Altemaria toxins by members of the A. tenuissima, A. arborescens, A. altemata species-groups and up to seven toxins by A. infectoria strains was demonstrated. Overall tenuazonic acid was the most extensively formed mycotoxin followed by alternariol and alternariol mono methylether, whereas altertoxin I was the most frequently detected toxin. Sulfoconjugated modifications of alternariol, alternariol mono methylether, altenuisol and altenuene were frequently determined. Unknown perylene quinone derivatives were additionally detected. Strains of the species-group A. infectoria could be segregated from strains of the other three species-groups due to significantly lower toxin levels and the specific production of infectopyrone. Apart from infectopyrone, alterperylenol was also frequently produced by 95% of the A. infectoria strains. Neither by the concentration nor by the composition of the targeted Altemaria toxins a differentiation between the species-groups A. altemata, A. tenuissima and A. arborescens was possible. KW - small-spored Alternaria fungi KW - Alternaria species-groups KW - Alternaria mycotoxins KW - chemotaxonomy KW - secondary metabolite profiling KW - LC-MS/MS KW - wheat KW - perylene quinone derivatives Y1 - 2018 U6 - https://doi.org/10.3389/fmicb.2018.01368 SN - 1664-302X VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Zwickel, Theresa A1 - Kahl, Sandra M. A1 - Rychlik, Michael A1 - Müller, Marina E. H. T1 - Chemotaxonomy of mycotoxigenic small-spored Alternaria fungi BT - do multitoxin mixtures act as an indicator for species differentiation? T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Necrotrophic as well as saprophytic small-spored Altemaria (A.) species are annually responsible for major losses of agricultural products, such as cereal crops, associated with the contamination of food and feedstuff with potential health-endangering Altemaria toxins. Knowledge of the metabolic capabilities of different species-groups to form mycotoxins is of importance for a reliable risk assessment. 93 Altemaria strains belonging to the four species groups Alternaria tenuissima, A. arborescens, A. altemata, and A. infectoria were isolated from winter wheat kernels harvested from fields in Germany and Russia and incubated under equal conditions. Chemical analysis by means of an HPLC-MS/MS multi-Alternaria-toxin-method showed that 95% of all strains were able to form at least one of the targeted 17 non-host specific Altemaria toxins. Simultaneous production of up to 15 (modified) Altemaria toxins by members of the A. tenuissima, A. arborescens, A. altemata species-groups and up to seven toxins by A. infectoria strains was demonstrated. Overall tenuazonic acid was the most extensively formed mycotoxin followed by alternariol and alternariol mono methylether, whereas altertoxin I was the most frequently detected toxin. Sulfoconjugated modifications of alternariol, alternariol mono methylether, altenuisol and altenuene were frequently determined. Unknown perylene quinone derivatives were additionally detected. Strains of the species-group A. infectoria could be segregated from strains of the other three species-groups due to significantly lower toxin levels and the specific production of infectopyrone. Apart from infectopyrone, alterperylenol was also frequently produced by 95% of the A. infectoria strains. Neither by the concentration nor by the composition of the targeted Altemaria toxins a differentiation between the species-groups A. altemata, A. tenuissima and A. arborescens was possible. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 696 KW - small-spored Alternaria fungi KW - Alternaria species-groups KW - Alternaria mycotoxins KW - chemotaxonomy KW - secondary metabolite profiling KW - LC-MS/MS KW - wheat KW - perylene quinone derivatives Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-426623 SN - 1866-8372 IS - 696 ER -