TY - JOUR A1 - Robert, Helene S. A1 - Grunewald, Wim A1 - Sauer, Michael A1 - Cannoot, Bernard A1 - Soriano, Mercedes A1 - Swarup, Ranjan A1 - Weijers, Dolf A1 - Bennett, Malcolm A1 - Boutilier, Kim A1 - Friml, Jiri T1 - Plant embryogenesis requires AUX/LAX-mediated auxin influx JF - Development : Company of Biologists N2 - The plant hormone auxin and its directional transport are known to play a crucial role in defining the embryonic axis and subsequent development of the body plan. Although the role of PIN auxin efflux transporters has been clearly assigned during embryonic shoot and root specification, the role of the auxin influx carriers AUX1 and LIKE-AUX1 (LAX) proteins is not well established. Here, we used chemical and genetic tools on Brassica napus microspore-derived embryos and Arabidopsis thaliana zygotic embryos, and demonstrate that AUX1, LAX1 and LAX2 are required for both shoot and root pole formation, in concert with PIN efflux carriers. Furthermore, we uncovered a positive-feedback loop between MONOPTEROS-(ARF5)dependent auxin signalling and auxin transport. This MONOPTEROS dependent transcriptional regulation of auxin influx (AUX1, LAX1 and LAX2) and auxin efflux (PIN1 and PIN4) carriers by MONOPTEROS helps to maintain proper auxin transport to the root tip. These results indicate that auxin-dependent cell specification during embryo development requires balanced auxin transport involving both influx and efflux mechanisms, and that this transport is maintained by a positive transcriptional feedback on auxin signalling. KW - Arabidopsis thaliana embryogenesis KW - Auxin transport KW - AUX1 KW - LIKE-AUX1 (LAX) KW - MONOPTEROS (ARF5) KW - PIN KW - Brassica napus KW - Microspore Y1 - 2015 U6 - https://doi.org/10.1242/dev.115832 SN - 0950-1991 SN - 1477-9129 VL - 142 IS - 4 SP - 702 EP - 711 PB - Company of Biologists Limited CY - Cambridge ER - TY - JOUR A1 - Thapa, Samudrajit A1 - Park, Seongyu A1 - Kim, Yeongjin A1 - Jeon, Jae-Hyung A1 - Metzler, Ralf A1 - Lomholt, Michael A. T1 - Bayesian inference of scaled versus fractional Brownian motion JF - Journal of physics : A, mathematical and theoretical N2 - We present a Bayesian inference scheme for scaled Brownian motion, and investigate its performance on synthetic data for parameter estimation and model selection in a combined inference with fractional Brownian motion. We include the possibility of measurement noise in both models. We find that for trajectories of a few hundred time points the procedure is able to resolve well the true model and parameters. Using the prior of the synthetic data generation process also for the inference, the approach is optimal based on decision theory. We include a comparison with inference using a prior different from the data generating one. KW - Bayesian inference KW - scaled Brownian motion KW - single particle tracking Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac60e7 SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 19 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - McVey, Mark J. A1 - Kim, Michael A1 - Tabuchi, Arata A1 - Srbely, Victoria A1 - Japtok, Lukasz A1 - Arenz, Christoph A1 - Rotstein, Ori A1 - Kleuser, Burkhard A1 - Semple, John W. A1 - Kuebler, Wolfgang M. T1 - Acid sphingomyelinase mediates murine acute lung injury following transfusion of aged platelets JF - American journal of physiology : Lung cellular and molecular physiology N2 - Pulmonary complications from stored blood products are the leading cause of mortality related to transfusion. Transfusion-related acute lung injury is mediated by antibodies or bioactive mediators, yet underlying mechanisms are incompletely understood. Sphingolipids such as ceramide regulate lung injury, and their composition changes as a function of time in stored blood. Here, we tested the hypothesis that aged platelets may induce lung injury via a sphingolipid-mediated mechanism. To assess this hypothesis, a two-hit mouse model was devised. Recipient mice were treated with 2 mg/kg intraperitoneal lipopolysaccharide (priming) 2 h before transfusion of 10 ml/kg stored (1-5 days) platelets treated with or without addition of acid sphingomyelinase inhibitor ARC39 or platelets from acid sphingomyelinase-deficient mice, which both reduce ceramide formation. Transfused mice were examined for signs of pulmonary neutrophil accumulation, endothelial barrier dysfunction, and histological evidence of lung injury. Sphingolipid profiles in stored platelets were analyzed by mass spectrophotometry. Transfusion of aged platelets into primed mice induced characteristic features of lung injury, which increased in severity as a function of storage time. Ceramide accumulated in platelets during storage, but this was attenuated by ARC39 or in acid sphingomyelinase-deficient platelets. Compared with wild-type platelets, transfusion of ARC39-treated or acid sphingomyelinase-deficient aged platelets alleviated lung injury. Aged platelets elicit lung injury in primed recipient mice, which can be alleviated by pharmacological inhibition or genetic deletion of acid sphingomyelinase. Interventions targeting sphingolipid formation represent a promising strategy to increase the safety and longevity of stored blood products. KW - transfusion-related acute lung injury KW - ceramide KW - acid sphingomyelinase KW - platelets KW - storage Y1 - 2017 U6 - https://doi.org/10.1152/ajplung.00317.2016 SN - 1040-0605 SN - 1522-1504 VL - 312 IS - 5 SP - 625 EP - 637 PB - American Physiological Society CY - Bethesda ER - TY - JOUR A1 - Thayumanasundaram, Savitha A1 - Raman Venkatesan, Thulasinath A1 - Ousset, Aymeric A1 - Van Hollebeke, Kim A1 - Aerts, Luc A1 - Wubbenhorst, Michael A1 - Van den Mooter, Guy T1 - Complementarity of mDSC, DMA, and DRS Techniques in the Study of T-g and Sub-T-g Transitions in Amorphous Solids BT - PVPVA, Indomethacin, and Amorphous Solid Dispersions Based on Indomethacin/PVPVA JF - Molecular pharmaceutics N2 - Recently, glasses, a subset of amorphous solids, have gained attention in various fields, such as polymer chemistry, optical fibers, and pharmaceuticals. One of their characteristic features, the glass transition temperature (T-g) which is absent in 100% crystalline materials, influences several material properties, such as free volume, enthalpy, viscosity, thermodynamic transitions, molecular motions, physical stability, mechanical properties, etc. In addition to T-g, there may be several other temperaturedependent transitions known as sub-T-g transitions (or beta-, gamma-, and delta-relaxations) which are identified by specific analytical techniques. The study of T-g and sub-T-g transitions occurring in amorphous solids has gained much attention because of its importance in understanding molecular kinetics, and it requires the combination of conventional and novel characterization techniques. In the present study, three different analytical techniques [modulated differential scanning calorimetry (mDSC), dynamic mechanical analysis (DMA), and dielectric relaxation spectroscopy (DRS)] were used to perform comprehensive qualitative/quantitative characterization of molecular relaxations, miscibility, and molecular interactions present in an amorphous polymer (PVPVA), a model drug (indomethacin, IND), and IND/PVPVA-based amorphous solid dispersions (ASDs). This is the first ever reported DMA study on PVPVA in its powder form, which avoids the contribution of solvent to the mechanical properties when a selfstanding polymer film is used. A good correlation between the techniques in determining the T-g value of PVPVA, IND, and IND/ PVPVA-based ASDs is established, and the negligible difference (within 10 degrees C) is attributed to the different material properties assessed in each technique. However, the overall T-g behavior, the decrease in T-g with increase in drug loading in ASDs, is universally observed in all the above-mentioned techniques, which reveals their complementarity. DMA and DRS techniques are used to study the different sub-T-g transitions present in PVPVA, amorphous IND, and IND/PVPVA-based ASDs because these transitions are normally too weak or too broad for mDSC to detect. For IND/PVPVA-based ASDs, both techniques show a shift of sub-T-g transitions (or secondary relaxation peaks) toward the high-temperature region from -140 to -45 degrees C. Thus, this paper outlines the usage of different solid-state characterization techniques in understanding the different molecular dynamics present in the polymer, drug, and their interactions in ASDs with the integrated information obtained from individual techniques. KW - amorphous solids KW - PVPVA KW - indomethacin KW - ASDs KW - dynamic mechanical KW - analysis KW - dielectric relaxation spectroscopy KW - sub-T-g relaxations KW - relaxation dynamics Y1 - 2022 U6 - https://doi.org/10.1021/acs.molpharmaceut.2c00123 SN - 1543-8384 SN - 1543-8392 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Kim, MyoungHwee A1 - Lin, Chiao-I A1 - Henschke, Jakob A1 - Quarmby, Andrew James A1 - Engel, Tilman A1 - Cassel, Michael T1 - Effects of exercise treatment on functional outcome parameters in mid-portion achilles tendinopathy BT - a systematic review JF - Frontiers in Sports and Active Living N2 - Exercise interventions are evident in the treatment of mid-portion Achilles tendinopathy (AT). However, there is still a lack of knowledge concerning the effect of different exercise treatments on improving a specific function (e.g., strength) in this population. Thus, this study aimed to systematically review the effect of exercise treatments on different functional outcomes in mid-portion AT. An electronic database of Pubmed, Web of Science, and Cochrane Central Register of Controlled Trials were searched from inception to 21 February 2023. Studies that investigated changes in plantar flexor function with exercise treatments were considered in mid-portion AT. Only randomized controlled trials (RCTs) and clinical controlled trials (CCTs) were included. Functional outcomes were classified by kinetic (e.g., strength), kinematic [e.g., ankle range of motion (ROM)], and sensorimotor (e.g., balance index) parameters. The types of exercise treatments were classified into eccentric, concentric, and combined (eccentric plus concentric) training modes. Quality assessment was appraised using the Physiotherapy Evidence Database scale for RCTs, and the Joanna Briggs Institute scale for CCTs. The search yielded 2,260 records, and a total of ten studies were included. Due to the heterogeneity of the included studies, a qualitative synthesis was performed. Eccentric training led to improvements in power outcomes (e.g., height of countermovement jump), and in strength outcomes (e.g., peak torque). Concentric training regimens showed moderate enhanced power outcomes. Moreover, one high-quality study showed an improvement in the balance index by eccentric training, whereas the application of concentric training did not. Combined training modalities did not lead to improvements in strength and power outcomes. Plantarflexion and dorsiflexion ROM measures did not show relevant changes by the exercise treatments. In conclusion, eccentric training is evident in improving strength outcomes in AT patients. Moreover, it shows moderate evidence improvements in power and the sensorimotor parameter "balance index". Concentric training presents moderate evidence in the power outcomes and can therefore be considered as an alternative to improve this function. Kinematic analysis of plantarflexion and dorsiflexion ROM might not be useful in AT people. This study expands the knowledge what types of exercise regimes should be considered to improve the functional outcomes in AT. KW - exercise treatments KW - eccentric training KW - concentric training KW - combined training KW - kinetic parameters KW - kinematic parameters KW - sensorimotor parameters KW - mid-portion achilles tendinopathy Y1 - 2023 U6 - https://doi.org/10.3389/fspor.2023.1144484 SN - 2624-9367 VL - 5 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Quarmby, Andrew James A1 - Mönnig, Jamal A1 - Mugele, Hendrik A1 - Henschke, Jakob A1 - Kim, MyoungHwee A1 - Cassel, Michael A1 - Engel, Tilman T1 - Biomechanics and lower limb function are altered in athletes and runners with achilles tendinopathy compared with healthy controls: A systematic review T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Achilles tendinopathy (AT) is a debilitating injury in athletes, especially for those engaged in repetitive stretch-shortening cycle activities. Clinical risk factors are numerous, but it has been suggested that altered biomechanics might be associated with AT. No systematic review has been conducted investigating these biomechanical alterations in specifically athletic populations. Therefore, the aim of this systematic review was to compare the lower-limb biomechanics of athletes with AT to athletically matched asymptomatic controls. Databases were searched for relevant studies investigating biomechanics during gait activities and other motor tasks such as hopping, isolated strength tasks, and reflex responses. Inclusion criteria for studies were an AT diagnosis in at least one group, cross-sectional or prospective data, at least one outcome comparing biomechanical data between an AT and healthy group, and athletic populations. Studies were excluded if patients had Achilles tendon rupture/surgery, participants reported injuries other than AT, and when only within-subject data was available.. Effect sizes (Cohen's d) with 95% confidence intervals were calculated for relevant outcomes. The initial search yielded 4,442 studies. After screening, twenty studies (775 total participants) were synthesised, reporting on a wide range of biomechanical outcomes. Females were under-represented and patients in the AT group were three years older on average. Biomechanical alterations were identified in some studies during running, hopping, jumping, strength tasks and reflex activity. Equally, several biomechanical variables studied were not associated with AT in included studies, indicating a conflicting picture. Kinematics in AT patients appeared to be altered in the lower limb, potentially indicating a pattern of “medial collapse”. Muscular activity of the calf and hips was different between groups, whereby AT patients exhibited greater calf electromyographic amplitudes despite lower plantar flexor strength. Overall, dynamic maximal strength of the plantar flexors, and isometric strength of the hips might be reduced in the AT group. This systematic review reports on several biomechanical alterations in athletes with AT. With further research, these factors could potentially form treatment targets for clinicians, although clinical approaches should take other contributing health factors into account. The studies included were of low quality, and currently no solid conclusions can be drawn. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 830 KW - achilles tendinopathy KW - biomechanics KW - neuromuscular KW - kinetics KW - electromyography KW - athletes KW - runners KW - kinematics Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-587603 SN - 1866-8364 IS - 830 ER - TY - JOUR A1 - Quarmby, Andrew James A1 - Mönnig, Jamal A1 - Mugele, Hendrik A1 - Henschke, Jakob A1 - Kim, MyoungHwee A1 - Cassel, Michael A1 - Engel, Tilman T1 - Biomechanics and lower limb function are altered in athletes and runners with achilles tendinopathy compared with healthy controls: A systematic review JF - Frontiers in Sports and Active Living N2 - Achilles tendinopathy (AT) is a debilitating injury in athletes, especially for those engaged in repetitive stretch-shortening cycle activities. Clinical risk factors are numerous, but it has been suggested that altered biomechanics might be associated with AT. No systematic review has been conducted investigating these biomechanical alterations in specifically athletic populations. Therefore, the aim of this systematic review was to compare the lower-limb biomechanics of athletes with AT to athletically matched asymptomatic controls. Databases were searched for relevant studies investigating biomechanics during gait activities and other motor tasks such as hopping, isolated strength tasks, and reflex responses. Inclusion criteria for studies were an AT diagnosis in at least one group, cross-sectional or prospective data, at least one outcome comparing biomechanical data between an AT and healthy group, and athletic populations. Studies were excluded if patients had Achilles tendon rupture/surgery, participants reported injuries other than AT, and when only within-subject data was available.. Effect sizes (Cohen's d) with 95% confidence intervals were calculated for relevant outcomes. The initial search yielded 4,442 studies. After screening, twenty studies (775 total participants) were synthesised, reporting on a wide range of biomechanical outcomes. Females were under-represented and patients in the AT group were three years older on average. Biomechanical alterations were identified in some studies during running, hopping, jumping, strength tasks and reflex activity. Equally, several biomechanical variables studied were not associated with AT in included studies, indicating a conflicting picture. Kinematics in AT patients appeared to be altered in the lower limb, potentially indicating a pattern of “medial collapse”. Muscular activity of the calf and hips was different between groups, whereby AT patients exhibited greater calf electromyographic amplitudes despite lower plantar flexor strength. Overall, dynamic maximal strength of the plantar flexors, and isometric strength of the hips might be reduced in the AT group. This systematic review reports on several biomechanical alterations in athletes with AT. With further research, these factors could potentially form treatment targets for clinicians, although clinical approaches should take other contributing health factors into account. The studies included were of low quality, and currently no solid conclusions can be drawn. KW - achilles tendinopathy KW - biomechanics KW - neuromuscular KW - kinetics KW - electromyography KW - athletes KW - runners KW - kinematics Y1 - 2023 U6 - https://doi.org/10.3389/fspor.2022.1012471 SN - 2624-9367 PB - Frontiers CY - Lausanne, Schweiz ER - TY - JOUR A1 - Fujikura, Ushio A1 - Elsaesser, Lore A1 - Breuninger, Holger A1 - Sanchez-Rodriguez, Clara A1 - Ivakov, Alexander A1 - Laux, Thomas A1 - Findlay, Kim A1 - Persson, Staffan A1 - Lenhard, Michael T1 - Atkinesin-13A modulates cell-wall synthesis and cell expansion in arabidopsis thaliana via the THESEUS1 pathway JF - PLoS Genetics : a peer-reviewed, open-access journal N2 - Growth of plant organs relies on cell proliferation and expansion. While an increasingly detailed picture about the control of cell proliferation is emerging, our knowledge about the control of cell expansion remains more limited. We demonstrate the internal-motor kinesin AtKINESIN-13A (AtKIN13A) limits cell expansion and cell size in Arabidopsis thaliana, ion atkinl3a mutants forming larger petals with larger cells. The homolog, AtKINESIN-13B, also affects cell expansion and double mutants display growth, gametophytic and early embryonic defects, indicating a redundant role of he two genes. AtKIN13A is known to depolymerize microtubules and influence Golgi motility and distribution. Consistent his function, AtKIN13A interacts genetically with ANGUSTIFOLIA, encoding a regulator of Golgi dynamics. Reduced AtIGN13A activity alters cell wall structure as assessed by Fourier-transformed infrared-spectroscopy and triggers signalling he THESEUS1-dependent cell-wall integrity pathway, which in turn promotes the excess cell expansion in the atkinl3a mutant. Thus, our results indicate that the intracellular activity of AtKIN13A regulates cell expansion and wall architecture via THESEUS1, providing a compelling case of interplay between cell wall integrity sensing and expansion. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pgen.1004627 SN - 1553-7390 SN - 1553-7404 VL - 10 IS - 9 PB - PLoS CY - San Fransisco ER - TY - JOUR A1 - Johnson, Kim L. A1 - Lenhard, Michael T1 - Genetic control of plant organ growth JF - New phytologist : international journal of plant science N2 - The growth of plant organs is under genetic control. Work in model species has identified a considerable number of genes that regulate different aspects of organ growth. This has led to an increasingly detailed knowledge about how the basic cellular processes underlying organ growth are controlled, and which factors determine when proliferation gives way to expansion, with this transition emerging as a critical decision point during primordium growth. Progress has been made in elucidating the genetic basis of allometric growth and the role of tissue polarity in shaping organs. We are also beginning to understand how the mechanisms that determine organ identity influence local growth behaviour to generate organs with characteristic sizes and shapes. Lastly, growth needs to be coordinated at several levels, for example between different cell layers and different regions within one organ, and the genetic basis for such coordination is being elucidated. However, despite these impressive advances, a number of basic questions are still not fully answered, for example, whether and how a growing primordium keeps track of its size. Answering these questions will likely depend on including additional approaches that are gaining in power and popularity, such as combined live imaging and modelling. KW - growth coordination KW - organ growth KW - organ identity KW - organ shape KW - organ size Y1 - 2011 U6 - https://doi.org/10.1111/j.1469-8137.2011.03737.x SN - 0028-646X VL - 191 IS - 2 SP - 319 EP - 333 PB - Wiley-Blackwell CY - Malden ER -