TY - JOUR A1 - King, Turi E. A1 - Gonzalez-Fortes, Gloria M. A1 - Balaresque, Patricia A1 - Thomas, Mark G. A1 - Balding, David A1 - Delser, Pierpaolo Maisano A1 - Neumann, Rita A1 - Parson, Walther A1 - Knapp, Michael A1 - Walsh, Susan A1 - Tonasso, Laure A1 - Holt, John A1 - Kayser, Manfred A1 - Appleby, Jo A1 - Forster, Peter A1 - Ekserdjian, David A1 - Hofreiter, Michael A1 - Schuerer, Kevin T1 - Identification of the remains of King Richard III JF - Nature Communications Y1 - 2014 U6 - https://doi.org/10.1038/ncomms6631 SN - 2041-1723 VL - 5 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Scheller, Frieder W. A1 - Makower, Alexander A1 - Ghindilis, A. L. A1 - Bier, Frank Fabian A1 - Ehrentreich-Förster, Eva A1 - Wollenberger, Ursula A1 - Bauer, Christian G. A1 - Micheel, Burkhard A1 - Pfeiffer, Dorothea A1 - Szeponik, Jan A1 - Michael, N. A1 - Kaden, H. T1 - Enzyme sensors for subnanomolar concentrations Y1 - 1995 ER - TY - JOUR A1 - Förster, Daniel W. A1 - Bull, James K. A1 - Lenz, Dorina A1 - Autenrieth, Marijke A1 - Paijmans, Johanna L. A. A1 - Kraus, Robert H. S. A1 - Nowak, Carsten A1 - Bayerl, Helmut A1 - Kühn, Ralph A1 - Saveljev, Alexander P. A1 - Sindicic, Magda A1 - Hofreiter, Michael A1 - Schmidt, Krzysztof A1 - Fickel, Jörns T1 - Targeted resequencing of coding DNA sequences for SNP discovery in nonmodel species JF - Molecular ecology resources N2 - Targeted capture coupled with high-throughput sequencing can be used to gain information about nuclear sequence variation at hundreds to thousands of loci. Divergent reference capture makes use of molecular data of one species to enrich target loci in other (related) species. This is particularly valuable for nonmodel organisms, for which often no a priori knowledge exists regarding these loci. Here, we have used targeted capture to obtain data for 809 nuclear coding DNA sequences (CDS) in a nonmodel organism, the Eurasian lynx Lynx lynx, using baits designed with the help of the published genome of a related model organism (the domestic cat Felis catus). Using this approach, we were able to survey intraspecific variation at hundreds of nuclear loci in L. lynx across the species’ European range. A large set of biallelic candidate SNPs was then evaluated using a high-throughput SNP genotyping platform (Fluidigm), which we then reduced to a final 96 SNP-panel based on assay performance and reliability; validation was carried out with 100 additional Eurasian lynx samples not included in the SNP discovery phase. The 96 SNP-panel developed from CDS performed very successfully in the identification of individuals and in population genetic structure inference (including the assignment of individuals to their source population). In keeping with recent studies, our results show that genic SNPs can be valuable for genetic monitoring of wildlife species. KW - CDS KW - conservation genetics KW - Eurasian lynx KW - genetic monitoring KW - hybridization capture KW - single nucleotide polymorphism Y1 - 2018 U6 - https://doi.org/10.1111/1755-0998.12924 SN - 1755-098X SN - 1755-0998 VL - 18 IS - 6 SP - 1356 EP - 1373 PB - Wiley CY - Hoboken ER -