TY - JOUR A1 - Menke, Robert T1 - Tugend und Respekt Y1 - 2004 SN - 3-518-4560-0 ER - TY - GEN A1 - Olmer, Ruth A1 - Engels, Lena A1 - Usman, Abdulai A1 - Menke, Sandra A1 - Malik, Muhammad Nasir Hayat A1 - Pessler, Frank A1 - Göhring, Gudrun A1 - Bornhorst, Dorothee A1 - Bolten, Svenja A1 - Abdelilah-Seyfried, Salim A1 - Scheper, Thomas A1 - Kempf, Henning A1 - Zweigerdt, Robert A1 - Martin, Ulrich T1 - Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Endothelial cells (ECs) are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor) cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs) represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1182 KW - virus infection KW - progenitor cells KW - in vitro KW - telomere dysfunction KW - cord blood KW - cardiomyogenic differentiation KW - angiogenesis KW - efficient KW - aberrations KW - expression Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427095 SN - 1866-8372 IS - 5 ER - TY - JOUR A1 - Olmer, Ruth A1 - Engels, Lena A1 - Usman, Abdulai A1 - Menke, Sandra A1 - Malik, Muhammad Nasir Hayat A1 - Pessler, Frank A1 - Goehring, Gudrun A1 - Bornhorst, Dorothee A1 - Bolten, Svenja A1 - Abdelilah-Seyfried, Salim A1 - Scheper, Thomas A1 - Kempf, Henning A1 - Zweigerdt, Robert A1 - Martin, Ulrich T1 - Differentiation of Human Pluripotent Stem Cells into Functional Endothelial Cells in Scalable Suspension Culture JF - Stem Cell Reports N2 - Endothelial cells (ECs) are involved in a variety of cellular responses. As multifunctional components of vascular structures, endothelial (progenitor) cells have been utilized in cellular therapies and are required as an important cellular component of engineered tissue constructs and in vitro disease models. Although primary ECs from different sources are readily isolated and expanded, cell quantity and quality in terms of functionality and karyotype stability is limited. ECs derived from human induced pluripotent stem cells (hiPSCs) represent an alternative and potentially superior cell source, but traditional culture approaches and 2D differentiation protocols hardly allow for production of large cell numbers. Aiming at the production of ECs, we have developed a robust approach for efficient endothelial differentiation of hiPSCs in scalable suspension culture. The established protocol results in relevant numbers of ECs for regenerative approaches and industrial applications that show in vitro proliferation capacity and a high degree of chromosomal stability. KW - virus infection KW - progenitor cells KW - in vitro KW - telomere dysfunction KW - cord blood KW - cardiomyogenic differentiation KW - angiogenesis KW - efficient KW - aberrations KW - expression Y1 - 2017 U6 - https://doi.org/10.1016/j.stemcr.2018.03.017 SN - 2213-6711 VL - 10 IS - 5 PB - Springer CY - New York ER - TY - JOUR A1 - Welke, Robert-William A1 - Sperber, Hannah Sabeth A1 - Bergmann, Ronny A1 - Koikkarah, Amit A1 - Menke, Laura A1 - Sieben, Christian A1 - Krüger, Detlev H. A1 - Chiantia, Salvatore A1 - Herrmann, Andreas A1 - Schwarzer, Roland T1 - Characterization of hantavirus N protein intracellular dynamics and localization JF - Viruses N2 - Hantaviruses are enveloped viruses that possess a tri-segmented, negative-sense RNA genome. The viral S-segment encodes the multifunctional nucleocapsid protein (N), which is involved in genome packaging, intracellular protein transport, immunoregulation, and several other crucial processes during hantavirus infection. In this study, we generated fluorescently tagged N protein constructs derived from Puumalavirus (PUUV), the dominant hantavirus species in Central, Northern, and Eastern Europe. We comprehensively characterized this protein in the rodent cell line CHO-K1, monitoring the dynamics of N protein complex formation and investigating co-localization with host proteins as well as the viral glycoproteins Gc and Gn. We observed formation of large, fibrillar PUUV N protein aggregates, rapidly coalescing from early punctate and spike-like assemblies. Moreover, we found significant spatial correlation of N with vimentin, actin, and P-bodies but not with microtubules. N constructs also co-localized with Gn and Gc albeit not as strongly as the glycoproteins associated with each other. Finally, we assessed oligomerization of N constructs, observing efficient and concentration-dependent multimerization, with complexes comprising more than 10 individual proteins. KW - hantavirus KW - N protein KW - oligomerization KW - actin KW - P-bodies KW - vimentin KW - Number and Brightness KW - Puumalavirus KW - macromolecular assemblies Y1 - 2022 U6 - https://doi.org/10.3390/v14030457 SN - 1999-4915 VL - 14 IS - 3 PB - MDPI CY - Basel ER -