TY - JOUR A1 - Lesinski, Melanie A1 - Mühlbauer, Thomas A1 - Buesch, Dirk A1 - Granacher, Urs T1 - Acute Effects of Postactivation Potentiation on Strength and Speed Performance in Athletes JF - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Background: The contractile history of a muscle or a muscle group can result in an acute enhancement of subsequent muscle force output. This phenomenon is referred to as postactivation potentiation (PAP) and it was frequently substantiated in original research manuscripts, systematic literature reviews, and meta-analyses. However, there is a lack in the literature regarding precise dose-response relations. This literature review describes the main determinants of PAP effects and additionally presents the state of the art regarding the acute effects of PAP protocols on measures of strength, power, and speed in subelite and elite athletes of different sport disciplines. Furthermore, an attempt is made to demonstrate evidence-based information concerning the design of effective PAP protocols. Methods: Our literature search included the electronic databases Pubmed, SportDiscus, and Google Scholar (1995 - March 2013). In total, 23 studies met the inclusionary criteria for review. Results: Findings from our literature review indicate that various conditioning activities produce acute PAP effects in subelite and particularly elite athletes. More specifically, conditioning activities that are characterised by multiple sets, moderate to high intensities (60 - 84 % of the one repetition maximum), and rest intervals of 7 - 10 min. following the conditioning activity have the potential to induce short-term improvements in muscle force output and sports performance. Conclusion: It is recommended that subelite and particularly elite athletes from strength, power, and speed disciplines apply specifically tailored conditioning activities during the acute preparation process for competition to induce performance enhancing PAP effects. KW - conditioning stimulus KW - dose-response relationship KW - athletic performance Y1 - 2013 U6 - https://doi.org/10.1055/s-0033-1335414 SN - 0932-0555 SN - 1439-1236 VL - 27 IS - 3 SP - 147 EP - 155 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Lesinski, Melanie A1 - Mühlbauer, Thomas A1 - Buesch, Dirk A1 - Granacher, Urs T1 - Effects of complex training on strength and speed performance in athletes: A systematic review effects of complex training on athletic performance JF - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Background: Post-activation potentiation (PAP) can elicit acute performance enhancements in variables of strength, power, and speed. However, it is unresolved whether the frequent integration of PAP eliciting conditioning activities in training (i.e., complex training) results in long-term adaptations. In this regard, it is of interest to know whether complex training results in larger performance enhancements as compared to more traditional and isolated training regimens (e. g., resistance training). Thus, this systematic literature review summarises the current state of the art regarding the effects of complex training on measures of strength, power, and speed in recreational, subelite, and elite athletes. Further, it provides information on training volume and intensities that proved to be effective. Methods: Our literature search included the electronic databases Pubmed, SportDiscus, and Web of Science (1995 to September 2013). In total, 17 studies met the inclusionary criteria for review. Ten studies examined alternating complex training and 7 studies sequenced complex training. Results: Our findings indicated small to large effects for both alternating complex training (countermovement jump height: +7.4 % [ESd = -0.43]; squat jump height: +9.8 % [ESd = -0.66]; sprint time: -2.4% [ESd = 0.63]) and sequenced complex training (countermovement jump height: +6.0 % [ESd = -0.83]; squat jump height: +11.9% [ESd = -0.97], sprint time: -0.7% [ESd = 0.52]) in measures of power and speed. As compared to more traditional training regimens, alternating and sequenced complex training showed only small effects in measures of strength, power, and speed. A more detailed analysis of alternating complex training revealed larger effects in countermovement jump height in recreational athletes (+9.7% [ESd = -0.57]) as compared to subelite and elite athletes (+2.7% [ESd = -0.15]). Based on the relevant and currently available literature, missing data (e.g., time for rest interval) and diverse information regarding training volume and intensity do not allow us to establish evidence-based dose-response relations for complex training. Conclusion: Complex training represents an effective training regimen for athletes if the goal is to enhance strength, power, and speed. Studies with high methodological quality have to be conducted in the future to elucidate whether complex training is less, similar, or even more effective compared to more traditional training regimens. Finally, it should be clarified whether alternated and/or sequenced conditioning activities implemented in complex training actually elicit acute PAP effects. KW - resistance training KW - plyometric training KW - dose-response relation KW - athletic performance KW - elite sport Y1 - 2014 U6 - https://doi.org/10.1055/s-0034-1366145 SN - 0932-0555 SN - 1439-1236 VL - 28 IS - 2 SP - 85 EP - 107 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Granacher, Urs A1 - Lesinski, Melanie A1 - Buesch, Dirk A1 - Mühlbauer, Thomas A1 - Prieske, Olaf A1 - Puta, Christian A1 - Gollhofer, Albert A1 - Behm, David George T1 - Effects of Resistance Training in Youth Athletes on Muscular Fitness and Athletic Performance: A Conceptual Model for Long-Term Athlete Development JF - Frontiers in physiology N2 - During the stages of long-term athlete development (LTAD), resistance training (RT) is an important means for (i) stimulating athletic development, (ii) tolerating the demands of long-term training and competition, and (iii) inducing long-term health promoting effects that are robust over time and track into adulthood. However, there is a gap in the literature with regards to optimal RT methods during LTAD and how RT is linked to biological age. Thus, the aims of this scoping review were (i) to describe and discuss the effects of RT on muscular fitness and athletic performance in youth athletes, (ii) to introduce a conceptual model on how to appropriately implement different types of RT within LTAD stages, and (iii) to identify research gaps from the existing literature by deducing implications for future research. In general, RT produced small -to -moderate effects on muscular fitness and athletic performance in youth athletes with muscular strength showing the largest improvement. Free weight, complex, and plyometric training appear to be well -suited to improve muscular fitness and athletic performance. In addition, balance training appears to be an important preparatory (facilitating) training program during all stages of LTAD but particularly during the early stages. As youth athletes become more mature, specificity, and intensity of RT methods increase. This scoping review identified research gaps that are summarized in the following and that should be addressed in future studies: (i) to elucidate the influence of gender and biological age on the adaptive potential following RT in youth athletes (especially in females), (ii) to describe RT protocols in more detail (i.e., always report stress and strain based parameters), and (iii) to examine neuromuscular and tendomuscular adaptations following RT in youth athletes. KW - weight lifting KW - children KW - adolescents KW - physical fitness KW - muscle strength KW - muscle power KW - muscular endurance Y1 - 2016 U6 - https://doi.org/10.3389/fphys.2016.00164 SN - 1664-042X VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER -