TY - THES A1 - Dammhahn, Melanie T1 - From individual variation to community structure : paterns, determinants and consequences of within- and between-species variation in behaviour, life-history and ecology Y1 - 2019 ER - TY - GEN A1 - Dammhahn, Melanie A1 - Dingemanse, Niels J. A1 - Niemelae, Petri T. A1 - Reale, Denis T1 - Pace-of-life syndromes BT - a framework for the adaptive integration of behaviour, physiology and life history T2 - Behavioral ecology and sociobiology N2 - This introduction to the topical collection on Pace-of-life syndromes: a framework for the adaptive integration of behaviour, physiology, and life history provides an overview of conceptual, theoretical, methodological, and empirical progress in research on pace-of-life syndromes (POLSs) over the last decade. The topical collection has two main goals. First, we briefly describe the history of POLS research and provide a refined definition of POLS that is applicable to various key levels of variation (genetic, individual, population, species). Second, we summarise the main lessons learned from current POLS research included in this topical collection. Based on an assessment of the current state of the theoretical foundations and the empirical support of the POLS hypothesis, we propose (i) conceptual refinements of theory, particularly with respect to the role of ecology in the evolution of (sexual dimorphism in) POLS, and (ii) methodological and statistical approaches to the study of POLS at all major levels of variation. This topical collection further holds (iii) key empirical examples demonstrating how POLS structures may be studied in wild populations of (non) human animals, and (iv) a modelling paper predicting POLS under various ecological conditions. Future POLS research will profit from the development of more explicit theoretical models and stringent empirical tests of model assumptions and predictions, increased focus on how ecology shapes (sex-specific) POLS structures at multiple hierarchical levels, and the usage of appropriate statistical tests and study designs. Significance statement As an introduction to the topical collection, we summarise current conceptual, theoretical, methodological and empirical progress in research on pace-of-life syndromes (POLSs), a framework for the adaptive integration of behaviour, physiology and life history at multiple hierarchical levels of variation (genetic, individual, population, species). Mixed empirical support of POLSs, particularly at the within-species level, calls for an evaluation and refinement of the hypothesis. We provide a refined definition of POLSs facilitating testable predictions. Future research on POLSs will profit from the development of more explicit theoretical models and stringent empirical tests of model assumptions and predictions, increased focus on how ecology shapes (sex-specific) POLSs structures at multiple hierarchical levels and the usage of appropriate statistical tests and study designs. Y1 - 2018 U6 - https://doi.org/10.1007/s00265-018-2473-y SN - 0340-5443 SN - 1432-0762 VL - 72 IS - 3 PB - Springer CY - New York ER - TY - JOUR A1 - Steinhoff, Philip O. M. A1 - Warfen, Bennet A1 - Voigt, Sissy A1 - Uhl, Gabriele A1 - Dammhahn, Melanie T1 - Individual differences in risk-taking affect foraging across different landscapes of fear JF - Oikos N2 - One of the strongest determinants of behavioural variation is the tradeoff between resource gain and safety. Although classical theory predicts optimal foraging under risk, empirical studies report large unexplained variation in behaviour. Intrinsic individual differences in risk-taking behaviour might contribute to this variation. By repeatedly exposing individuals of a small mesopredator to different experimental landscapes of risks and resources, we tested 1) whether individuals adjust their foraging behaviour according to predictions of the general tradeoff between energy gain and predation avoidance and 2) whether individuals differ consistently and predictably from each other in how they solve this tradeoff. Wild-caught individuals (n = 42) of the jumping spiderMarpissa muscosa, were subjected to repeated release and open-field tests to quantify among-individual variation in boldness and activity. Subsequently, individuals were tested in four foraging tests that differed in risk level (white/dark background colour) and risk variation (constant risk/variable risk simulated by bird dummy overflights) and contained inaccessible but visually perceivable food patches. When exposed to a white background, individuals reduced some aspects of movement and foraging intensity, suggesting that the degree of camouflage serves as a proxy of perceived risk in these predators. Short pulses of acute predation risk, simulated by bird overflights, had only small effects on aspects of foraging behaviour. Notably, a significant part of variation in foraging was due to among-individual differences across risk landscapes that are linked to consistent individual variation in activity, forming a behavioural syndrome. Our results demonstrate the importance of among-individual differences in behaviour of animals that forage under different levels of perceived risk. Since these differences likely affect food-web dynamics and have fitness consequences, future studies should explore the mechanisms that maintain the observed variation in natural populations. KW - animal personality KW - behavioural syndrome KW - foraging KW - jumping spider KW - landscape of fear KW - risk-reward tradeoff Y1 - 2020 U6 - https://doi.org/10.1111/oik.07508 SN - 0030-1299 SN - 1600-0706 VL - 129 IS - 12 SP - 1891 EP - 1902 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Montiglio, Pierre-Olivier A1 - Dammhahn, Melanie A1 - Messier, Gabrielle Dubuc A1 - Reale, Denis T1 - The pace-of-life syndrome revisited BT - the role of ecological conditions and natural history on the slow-fast continuum JF - Behavioral ecology and sociobiology N2 - The pace-of-life syndrome (i.e., POLS) hypothesis posits that behavioral and physiological traits mediate the trade-off between current and future reproduction. This hypothesis predicts that life history, behavioral, and physiological traits will covary under clearly defined conditions. Empirical tests are equivocal and suggest that the conditions necessary for the POLS to emerge are not always met. We nuance and expand the POLS hypothesis to consider alternative relationships among behavior, physiology, and life history. These relationships will vary with the nature of predation risk, the challenges posed by resource acquisition, and the energy management strategies of organisms. We also discuss how the plastic response of behavior, physiology, and life history to changes in ecological conditions and variation in resource acquisition among individuals determine our ability to detect a fast-slow pace of life in the first place or associations among these traits. Future empirical studies will provide most insights on the coevolution among behavior, physiology, and life history by investigating these traits both at the genetic and phenotypic levels in varying types of predation regimes and levels of resource abundance. KW - Behavior KW - Immunity KW - Life history strategies KW - Metabolism KW - Personality KW - Trait interaction Y1 - 2018 U6 - https://doi.org/10.1007/s00265-018-2526-2 SN - 0340-5443 SN - 1432-0762 VL - 72 IS - 7 PB - Springer CY - New York ER - TY - JOUR A1 - Scheffler, Christiane A1 - Dammhahn, Melanie T1 - Feminization of the fat distribution pattern of children and adolescents in a recent German population JF - American journal of human biology : the official journal of the Human Biology Council N2 - Objectives During the early 1990s, the economic and political situation in eastern Germany changed overnight. Here, we use the rare chance of an experiment-like setting in humans and aim to test whether the rapid change of environmental conditions in eastern Germany in the 1990s led to a change in the sex-specific fat distribution pattern, an endocrine-influenced phenotypic marker. METHODS Based on a cross-sectional data set of 6- to 18-year-old girls and boys measured between 1982-1991 and 1997-2012, we calculated a skinfold ratio of triceps to subscapular and percentage of body fat. Using linear regressions, we tested for differences in percentage of body fat and skinfold ratio between these two time periods. RESULTS We found that the percentage of body fat increased in boys and girls, and they accumulated relatively more fat on extremities than on the trunk in all BMI groups measured after 1997 as compared to those measured between 1982 and 1991. CONCLUSIONS Concurrent with drastic and rapid changes of environmental conditions, the body fat distribution of children and adolescents changed to a more feminized pattern during the early 1990s in an East German population. The changes in this endocrinologically mediated pattern might be associated with the increased exposure of individuals to endocrine-disrupting chemicals which are known to influence the endocrine, reproductive, and immune systems in animals and humans. Y1 - 2017 U6 - https://doi.org/10.1002/ajhb.23017 SN - 1042-0533 SN - 1520-6300 VL - 29 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Schirmer, Annika A1 - Hoffmann, Julia A1 - Eccard, Jana A1 - Dammhahn, Melanie T1 - My niche BT - individual spatial niche specialization affects within- and between-species interactions JF - Proceedings of the Royal Society of London : B, Biological sciences N2 - Intraspecific trait variation is an important determinant of fundamental ecological interactions. Many of these interactions are mediated by behaviour. Therefore, interindividual differences in behaviour should contribute to individual niche specialization. Comparable with variation in morphological traits, behavioural differentiation between individuals should limit similarity among competitors and thus act as a mechanism maintaining within-species variation in ecological niches and facilitating species coexistence. Here, we aimed to test whether interindividual differences in boldness covary with spatial interactions within and between two ecologically similar, co-occurring rodent species (Myodes glareolus, Apodemus agrarius). In five subpopulations in northeast Germany, we quantified individual differences in boldness via repeated standardized tests and spatial interaction patterns via capture-mark- recapture (n = 126) and automated VHF telemetry (n = 36). We found that boldness varied with space use in both species. Individuals of the same population occupied different spatial niches, which resulted in non-random patterns of within- and between-species spatial interactions. Behavioural types mainly differed in the relative importance of intra- versus interspecific competition. Within-species variation along this competition gradient could contribute to maintaining individual niche specialization. Moreover, behavioural differentiation between individuals limits similarity among competitors, which might facilitate the coexistence of functionally equivalent species and, thus, affect community dynamics and local biodiversity. KW - animal personality KW - competition KW - individual niche specialization KW - movement ecology KW - coexistence KW - small mammals Y1 - 2020 U6 - https://doi.org/10.1098/rspb.2019.2211 SN - 0962-8452 SN - 1471-2954 VL - 287 IS - 1918 PB - Royal Society CY - London ER - TY - JOUR A1 - Haemaelaeinen, Anni A1 - Dammhahn, Melanie A1 - Aujard, Fabienne A1 - Eberle, Manfred A1 - Hardy, Isabelle A1 - Kappeler, Peter M. A1 - Perret, Martine A1 - Schliehe-Diecks, Susanne A1 - Kraus, Cornelia T1 - Senescence or selective disappearance? Age trajectories of body mass in wild and captive populations of a small-bodied primate JF - Proceedings of the Royal Society of London : B, Biological sciences N2 - Classic theories of ageing consider extrinsic mortality (EM) a major factor in shaping longevity and ageing, yet most studies of functional ageing focus on species with low EM. This bias may cause overestimation of the influence of senescent declines in performance over condition-dependent mortality on demographic processes across taxa. To simultaneously investigate the roles of functional senescence (FS) and intrinsic, extrinsic and condition-dependent mortality in a species with a high predation risk in nature, we compared age trajectories of body mass (BM) in wild and captive grey mouse lemurs (Microcebus murinus) using longitudinal data (853 individuals followed through adulthood). We found evidence of non-random mortality in both settings. In captivity, the oldest animals showed senescence in their ability to regain lost BM, whereas no evidence of FS was found in the wild. Overall, captive animals lived longer, but a reversed sex bias in lifespan was observed between wild and captive populations. We suggest that even moderately condition-dependent EM may lead to negligible FS in the wild. While high EM may act to reduce the average lifespan, this evolutionary process may be counteracted by the increased fitness of the long-lived, high-quality individuals. KW - functional senescence KW - body mass KW - condition-dependent mortality KW - life-history evolution KW - lifespan KW - sex difference Y1 - 2014 U6 - https://doi.org/10.1098/rspb.2014.0830 SN - 0962-8452 SN - 1471-2954 VL - 281 IS - 1791 PB - Royal Society CY - London ER - TY - JOUR A1 - Pechouskova, Eva A1 - Dammhahn, Melanie A1 - Brameier, Markus A1 - Fichtel, Claudia A1 - Kappeler, Peter M. A1 - Huchard, Elise T1 - MHC class II variation in a rare and ecological specialist mouse lemur reveals lower allelic richness and contrasting selection patterns compared to a generalist and widespread sympatric congener JF - Immunogenetics N2 - The polymorphism of immunogenes of the major histocompatibility complex (MHC) is thought to influence the functional plasticity of immune responses and, consequently, the fitness of populations facing heterogeneous pathogenic pressures. Here, we evaluated MHC variation (allelic richness and divergence) and patterns of selection acting on the two highly polymorphic MHC class II loci (DRB and DQB) in the endangered primate Madame Berthe's mouse lemur (Microcebus berthae). Using 454 pyrosequencing, we examined MHC variation in a total of 100 individuals sampled over 9 years in Kirindy Forest, Western Madagascar, and compared our findings with data obtained previously for its sympatric congener, the grey mouse lemur (Microcebus murinus). These species exhibit a contrasting ecology and demography that were expected to affect MHC variation and molecular signatures of selection. We found a lower allelic richness concordant with its low population density, but a similar level of allelic divergence and signals of historical selection in the rare feeding specialist M. berthae compared to the widespread generalist M. murinus. These findings suggest that demographic factors may exert a stronger influence than pathogen-driven selection on current levels of allelic richness in M. berthae. Despite a high sequence similarity between the two congeners, contrasting selection patterns detected at DQB suggest its potential functional divergence. This study represents a first step toward unravelling factors influencing the adaptive divergence of MHC genes between closely related but ecologically differentiated sympatric lemurs and opens new questions regarding potential functional discrepancy that would explain contrasting selection patterns detected at DQB. KW - Primates KW - Cheirogaleidae KW - Microcebus berthae KW - 454 pyrosequencing Y1 - 2015 U6 - https://doi.org/10.1007/s00251-015-0827-4 SN - 0093-7711 SN - 1432-1211 VL - 67 IS - 4 SP - 229 EP - 245 PB - Springer CY - New York ER - TY - JOUR A1 - Dammhahn, Melanie A1 - Rakotondramanana, Claude Fabienne A1 - Goodman, Steven M. T1 - Coexistence of morphologically similar bats (Vespertilionidae) on Madagascar: stable isotopes reveal fine-grained niche differentiation among cryptic species JF - Journal of tropical ecology N2 - Based on niche theory, closely related and morphologically similar species are not predicted to coexist due to overlap in resource and habitat use. Local assemblages of bats often contain cryptic taxa, which co-occur despite notable similarities in morphology and ecology. We measured in two different habitat types on Madagascar levels of stable carbon and nitrogen isotopes in hair (n = 103) and faeces (n = 57) of cryptic Vespertilionidae taxa to indirectly examine whether fine-grained trophic niche differentiation explains their coexistence. In the dry deciduous forest (Kirindy), six sympatric species ranged over 6.0% in delta N-15, i.e. two trophic levels, and 4.2% in delta C-13 with a community mean of 11.3% in delta N-15 and - 21.0% in delta C-13. In the mesic forest (Antsahabe), three sympatric species ranged over one trophic level (delta N-15: 2.4%, delta C-13: 1.0%) with a community mean of 8.0% delta N-15 and - 21.7% in delta C-13. Multivariate analyses and residual permutation of Euclidian distances in delta C-13- delta N-15 bi-plots revealed in both communities distinct stable isotope signatures and species separation for the hair samples among coexisting Vespertilionidae. Intraspecific variation in faecal and hair stable isotopes did not indicate that seasonal migration might relax competition and thereby facilitate the local co-occurrence of sympatric taxa. KW - Chiroptera KW - community structure KW - congeneric species KW - ecological niches KW - migration KW - Neoromicia KW - Pipistrellus KW - Scotophilus KW - stable carbon KW - stable nitrogen Y1 - 2015 U6 - https://doi.org/10.1017/S0266467414000741 SN - 0266-4674 SN - 1469-7831 VL - 31 SP - 153 EP - 164 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Hamalainen, Anni A1 - Dammhahn, Melanie A1 - Aujard, Fabienne A1 - Kraus, Cornelia T1 - Losing grip: Senescent decline in physical strength in a small-bodied primate in captivity and in the wild JF - Experimental gerontology N2 - Muscle strength reflects physical functioning, declines at old age and predicts health and survival in humans and laboratory animals. Age-associated muscle deterioration causes loss of strength and may impair fitness of wild animals. However, the effects of age and life-history characteristics on muscle strength in wild animals are unknown. We investigated environment-and sex-specific patterns of physical functioning by measuring grip strength in wild and captive gray mouse lemurs. We expected more pronounced strength senescence in captivity due to condition-dependent, extrinsic mortality found in nature. Males were predicted to be stronger but potentially experience more severe senescence than females as predicted by life history theory. We found similar senescent declines in captive males and females as well as wild females, whereas wild males showed little decline, presumably due to their early mortality. Captive animals were generally weaker and showed earlier declines than wild animals. Unexpectedly, females tended to be stronger than males, especially in the reproductive season. Universal intrinsic mechanisms (e. g. sarcopenia) likely cause the similar patterns of strength loss across settings. The female advantage in muscle strength merits further study; it may follow higher reproductive investment by males, or be an adaptation associated with female social dominance. KW - Functional aging KW - Grip strength KW - Microcebus murinus KW - Natural population KW - Sarcopenia KW - Sex difference Y1 - 2015 U6 - https://doi.org/10.1016/j.exger.2014.11.017 SN - 0531-5565 SN - 1873-6815 VL - 61 SP - 54 EP - 61 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Pechouskova, Eva A1 - Dammhahn, Melanie A1 - Brameier, Markus A1 - Fichtel, Claudia A1 - Kappeler, Peter M. A1 - Huchard, Elise T1 - MHC class II variation in a rare and ecological specialist mouse lemur reveals lower allelic richness and contrasting selection patterns compared to a generalist and widespread sympatric congener T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - The polymorphism of immunogenes of the major histocompatibility complex (MHC) is thought to influence the functional plasticity of immune responses and, consequently, the fitness of populations facing heterogeneous pathogenic pressures. Here, we evaluated MHC variation (allelic richness and divergence) and patterns of selection acting on the two highly polymorphic MHC class II loci (DRB and DQB) in the endangered primate Madame Berthe's mouse lemur (Microcebus berthae). Using 454 pyrosequencing, we examined MHC variation in a total of 100 individuals sampled over 9 years in Kirindy Forest, Western Madagascar, and compared our findings with data obtained previously for its sympatric congener, the grey mouse lemur (Microcebus murinus). These species exhibit a contrasting ecology and demography that were expected to affect MHC variation and molecular signatures of selection. We found a lower allelic richness concordant with its low population density, but a similar level of allelic divergence and signals of historical selection in the rare feeding specialist M. berthae compared to the widespread generalist M. murinus. These findings suggest that demographic factors may exert a stronger influence than pathogen-driven selection on current levels of allelic richness in M. berthae. Despite a high sequence similarity between the two congeners, contrasting selection patterns detected at DQB suggest its potential functional divergence. This study represents a first step toward unravelling factors influencing the adaptive divergence of MHC genes between closely related but ecologically differentiated sympatric lemurs and opens new questions regarding potential functional discrepancy that would explain contrasting selection patterns detected at DQB. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 728 KW - Primates KW - Cheirogaleidae KW - Microcebus berthae KW - 454 pyrosequencing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429789 SN - 1866-8372 IS - 728 SP - 229 EP - 245 ER - TY - GEN A1 - Dammhahn, Melanie A1 - Randriamoria, Toky M. A1 - Goodman, Steven M. T1 - Broad and flexible stable isotope niches in invasive non-native Rattus spp. in anthropogenic and natural habitats of central eastern Madagascar T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Background: Rodents of the genus Rattus are among the most pervasive and successful invasive species, causing major vicissitudes in native ecological communities. A broad and flexible generalist diet has been suggested as key to the invasion success of Rattus spp. Here, we use an indirect approach to better understand foraging niche width, plasticity, and overlap within and between introduced Rattus spp. in anthropogenic habitats and natural humid forests of Madagascar. Results: Based on stable carbon and nitrogen isotope values measured in hair samples of 589 individual rodents, we found that Rattus rattus had an extremely wide foraging niche, encompassing the isotopic space covered by a complete endemic forest-dwelling Malagasy small mammal community. Comparisons of Bayesian standard ellipses, as well as (multivariate) mixed-modeling analyses, revealed that the stable isotope niche of R. rattus tended to change seasonally and differed between natural forests and anthropogenic habitats, indicating plasticity in feeding niches. In co-occurrence, R. rattus and Rattus norvegicus partitioned feeding niches. Isotopic mismatch of signatures of individual R. rattus and the habitat in which they were captured, indicate frequent dispersal movements for this species between natural forest and anthropogenic habitats. Conclusions: Since R. rattus are known to transmit a number of zoonoses, potentially affecting communities of endemic small mammals, as well as humans, these movements presumably increase transmission potential. Our results suggest that due to their generalist diet and potential movement between natural forest and anthropogenic habitats, Rattus spp. might affect native forest-dependent Malagasy rodents as competitors, predators, and disease vectors. The combination of these effects helps explain the invasion success of Rattus spp. and the detrimental effects of this genus on the endemic Malagasy rodent fauna. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 722 KW - Bayesian standard ellipse KW - coexistence KW - habitat use KW - humid forest KW - invasion ecology KW - invasive species KW - Rattus rattus KW - Rattus norvegicus KW - rodents KW - fur KW - stable carbon isotope KW - stable nitrogen isotope Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429419 SN - 1866-8372 IS - 722 ER - TY - JOUR A1 - Dammhahn, Melanie A1 - Randriamoria, Toky M. A1 - Goodman, Steven M. T1 - Broad and flexible stable isotope niches in invasive non-native Rattus spp. in anthropogenic and natural habitats of central eastern Madagascar JF - BMC ecology N2 - Background: Rodents of the genus Rattus are among the most pervasive and successful invasive species, causing major vicissitudes in native ecological communities. A broad and flexible generalist diet has been suggested as key to the invasion success of Rattus spp. Here, we use an indirect approach to better understand foraging niche width, plasticity, and overlap within and between introduced Rattus spp. in anthropogenic habitats and natural humid forests of Madagascar. Results: Based on stable carbon and nitrogen isotope values measured in hair samples of 589 individual rodents, we found that Rattus rattus had an extremely wide foraging niche, encompassing the isotopic space covered by a complete endemic forest-dwelling Malagasy small mammal community. Comparisons of Bayesian standard ellipses, as well as (multivariate) mixed-modeling analyses, revealed that the stable isotope niche of R. rattus tended to change seasonally and differed between natural forests and anthropogenic habitats, indicating plasticity in feeding niches. In co-occurrence, R. rattus and Rattus norvegicus partitioned feeding niches. Isotopic mismatch of signatures of individual R. rattus and the habitat in which they were captured, indicate frequent dispersal movements for this species between natural forest and anthropogenic habitats. Conclusions: Since R. rattus are known to transmit a number of zoonoses, potentially affecting communities of endemic small mammals, as well as humans, these movements presumably increase transmission potential. Our results suggest that due to their generalist diet and potential movement between natural forest and anthropogenic habitats, Rattus spp. might affect native forest-dependent Malagasy rodents as competitors, predators, and disease vectors. The combination of these effects helps explain the invasion success of Rattus spp. and the detrimental effects of this genus on the endemic Malagasy rodent fauna. KW - Bayesian standard ellipse KW - Coexistence KW - Habitat use KW - Humid forest KW - Invasion ecology KW - Invasive species KW - Rattus rattus KW - Rattus norvegicus KW - Rodents KW - Fur KW - Stable carbon isotope KW - Stable nitrogen isotope Y1 - 2017 U6 - https://doi.org/10.1186/s12898-017-0125-0 SN - 1472-6785 VL - 17 PB - BioMed Central CY - London ER - TY - JOUR A1 - Dammhahn, Melanie A1 - Landry-Cuerrier, Manuelle A1 - Reale, Denis A1 - Garant, Dany A1 - Humphries, Murray M. T1 - Individual variation in energy-saving heterothermy affects survival and reproductive success JF - Functional ecology : an official journal of the British Ecological Society N2 - 1. Given fundamental energetic trade-offs among growth, maintenance and reproduction, individual differences in energy saving should have consequences for survival and reproductive success. Many endotherms use periodic heterothermy to reduce energy and water requirements and individual variation in heterothermy should have fitness consequences. However, attempts to disentangle individual- and population-level variation in heterothermy are scarce. 2. Here, we quantified patterns of heterothermy of 55 free-ranging eastern chipmunks (Tamias striatus), food-hoarding hibernators. Over five hibernation periods, we obtained a total of 7108 daily individual heterothermy indices (median: 118 per individual). 3. Based on an individual reaction norm approach, we found that the use of heterothermy was repeatable and varied among individuals of the same population under similar environmental conditions. This among-individual variation had consequences for winter survival and reproductive success. Individuals using less heterothermy at the beginning of the winter had decreased survival in resource-rich but not in resource-poor years and higher reproductive success in the subsequent breeding season. 4. These results support the hypothesis that fluctuating selection maintains heterothermic diversity and suggest that individualized ecophysiology can contribute to a more thorough understanding of the evolution of energy-saving strategies in endotherms. KW - fitness consequences KW - hibernation KW - individual differences KW - individual reaction norm KW - Tamias striatus KW - torpor Y1 - 2017 U6 - https://doi.org/10.1111/1365-2435.12797 SN - 0269-8463 SN - 1365-2435 VL - 31 SP - 866 EP - 875 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Schirmer, Annika A1 - Herde, Antje A1 - Eccard, Jana A1 - Dammhahn, Melanie T1 - Individuals in space: personality-dependent space use, movement and microhabitat use facilitate individual spatial niche specialization JF - Oecologia N2 - Personality-dependent space use and movement might be crucially influencing ecological interactions, giving way to individual niche specialization. This new approach challenges classical niche theory with potentially great ecological consequences, but so far has only scarce empirical support. Here, we investigated if and how consistent inter-individual differences in behavior predict space use and movement patterns in free-ranging bank voles (Myodes glareolus) and thereby contribute to individual niche specialization. Individuals were captured and marked from three different subpopulations in North-East Germany. Inter-individual differences in boldness and exploration were quantified via repeated standardized tests directly in the field after capture. Subsequently, space use and movement patterns of a representative sample of the behavioral variation (n=21 individuals) were monitored via automated VHF telemetry for a period of four days, yielding on average 384 locations per individual. Bolder individuals occupied larger home ranges and core areas (estimated via kernel density analyses), moved longer distances, spatially overlapped with fewer conspecifics and preferred different microhabitats based on vegetation cover compared to shyer individuals. We found evidence for personality-dependent space use, movement, and occupation of individual spatial niches in bank voles. Thus, besides dietary niche specialization also spatial dimensions of ecological niches vary among individuals within populations, which may have important consequences for ecological interactions within- and between species. KW - Ecological niche KW - Inter-individual differences KW - Intraspecific competition KW - Movement ecology KW - Small mammal Y1 - 2019 U6 - https://doi.org/10.1007/s00442-019-04365-5 SN - 0029-8549 SN - 1432-1939 VL - 189 IS - 3 SP - 647 EP - 660 PB - Springer CY - New York ER - TY - GEN A1 - Eccard, Jana A1 - Herde, Antje A1 - Schuster, Andrea C. A1 - Liesenjohann, Thilo A1 - Knopp, Tatjana A1 - Heckel, Gerald A1 - Dammhahn, Melanie T1 - Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive “fast” types at one end of the spectrum to less fecund, long-lived, shy, plastic “slow” types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95% and 50% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1258 KW - animal personality KW - automated radio telemetry KW - behavioral type KW - fitness KW - home range KW - Microtus arvalis KW - parentage KW - reproductive success Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-558866 SN - 1866-8372 SP - 1 EP - 15 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Mazza, Valeria A1 - Czyperreck, Inken A1 - Eccard, Jana A1 - Dammhahn, Melanie T1 - Cross-Context Responses to Novelty in Rural and Urban Small Mammals JF - Frontiers in Ecology and Evolution N2 - The Anthropocene is the era of urbanization. The accelerating expansion of cities occurs at the expense of natural reservoirs of biodiversity and presents animals with challenges for which their evolutionary past might not have prepared them. Cognitive and behavioral adjustments to novelty could promote animals’ persistence under these altered conditions. We investigated the structure of, and covariance between, different aspects of responses to novelty in rural and urban small mammals of two non-commensal rodent species. We ran replicated experiments testing responses to three novelty types (object, food, or space) of 47 individual common voles (Microtus arvalis) and 41 individual striped field mice (Apodemus agrarius). We found partial support for the hypothesis that responses to novelty are structured, clustering (i) speed of responses, (ii) intensity of responses, and (iii) responses to food into separate dimensions. Rural and urban small mammals did not differ in most responses to novelty, suggesting that urban habitats do not reduce neophobia in these species. Further studies investigating whether comparable response patters are found throughout different stages of colonization, and along synurbanization processes of different duration, will help illuminate the dynamics of animals’ cognitive adjustments to urban life. KW - animal cognition KW - anthropogenic environment KW - HIREC KW - novelty KW - neophobia KW - neophilia KW - rodents KW - urbanization Y1 - 2021 U6 - https://doi.org/10.3389/fevo.2021.661971 SN - 2296-701X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - GEN A1 - Mazza, Valeria A1 - Czyperreck, Inken A1 - Eccard, Jana A1 - Dammhahn, Melanie T1 - Cross-Context Responses to Novelty in Rural and Urban Small Mammals T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The Anthropocene is the era of urbanization. The accelerating expansion of cities occurs at the expense of natural reservoirs of biodiversity and presents animals with challenges for which their evolutionary past might not have prepared them. Cognitive and behavioral adjustments to novelty could promote animals’ persistence under these altered conditions. We investigated the structure of, and covariance between, different aspects of responses to novelty in rural and urban small mammals of two non-commensal rodent species. We ran replicated experiments testing responses to three novelty types (object, food, or space) of 47 individual common voles (Microtus arvalis) and 41 individual striped field mice (Apodemus agrarius). We found partial support for the hypothesis that responses to novelty are structured, clustering (i) speed of responses, (ii) intensity of responses, and (iii) responses to food into separate dimensions. Rural and urban small mammals did not differ in most responses to novelty, suggesting that urban habitats do not reduce neophobia in these species. Further studies investigating whether comparable response patters are found throughout different stages of colonization, and along synurbanization processes of different duration, will help illuminate the dynamics of animals’ cognitive adjustments to urban life. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1226 KW - animal cognition KW - anthropogenic environment KW - HIREC KW - novelty KW - neophobia KW - neophilia KW - rodents KW - urbanization Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-543863 SN - 1866-8372 ER - TY - JOUR A1 - Eccard, Jana A1 - Herde, Antje A1 - Schuster, Andrea C. A1 - Liesenjohann, Thilo A1 - Knopp, Tatjana A1 - Heckel, Gerald A1 - Dammhahn, Melanie T1 - Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations JF - Ecology And Evolution N2 - Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive “fast” types at one end of the spectrum to less fecund, long-lived, shy, plastic “slow” types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95% and 50% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life. KW - animal personality KW - automated radio telemetry KW - behavioral type KW - fitness KW - home range KW - Microtus arvalis KW - parentage KW - reproductive success Y1 - 2022 U6 - https://doi.org/10.1002/ece3.8521 SN - 2045-7758 SP - 1 EP - 15 PB - John Wiley & Sons, Inc. CY - Vereinigte Staaten ER - TY - JOUR A1 - Mazza, Valeria A1 - Dammhahn, Melanie A1 - Lösche, Elisa A1 - Eccard, Jana T1 - Small mammals in the big city BT - behavioural adjustments of non-commensal rodents to urban environments JF - Global change biology N2 - A fundamental focus of current ecological and evolutionary research is to illuminate the drivers of animals' success in coping with human-induced rapid environmental change (HIREC). Behavioural adaptations are likely to play a major role in coping with HIREC because behaviour largely determines how individuals interact with their surroundings. A substantial body of research reports behavioural modifications in urban dwellers compared to rural conspecifics. However, it is often unknown whether the observed phenotypic divergence is due to phenotypic plasticity or the product of genetic adaptations. Here, we aimed at investigating (a) whether behavioural differences arise also between rural and urban populations of non-commensal rodents; and (b) whether these differences result from behavioural flexibility or from intrinsic behavioural characteristics, such as genetic or maternal effects. We captured and kept under common environment conditions 42 rural and 52 urban adult common voles (Microtus arvalis) from seven subpopulations along a rural-urban gradient. We investigated individual variation in behavioural responses associated with risk-taking and exploration, in situ at the time of capture in the field and ex situ after 3 months in captivity. Urban dwellers were bolder and more explorative than rural conspecifics at the time of capture in their respective sites (in situ). However, when tested under common environmental conditions ex situ, rural individuals showed little change in their behavioural responses whereas urban individuals altered their behaviour considerably and were consistently shyer and less explorative than when tested in situ. The combination of elevated risk-taking and exploration with high behavioural flexibility might allow urban populations to successfully cope with the challenges of HIREC. Investigating whether the observed differences in behavioural flexibility are adaptive and how they are shaped by additive and interactive effects of genetic make-up and past environmental conditions will help illuminate eco-evolutionary dynamics under HIREC and predict persistence of populations under urban conditions. KW - animal personality KW - behavioural adjustment KW - behavioural flexibility KW - environmental change KW - HIREC KW - rodents KW - urbanization Y1 - 2020 U6 - https://doi.org/10.1111/gcb.15304 SN - 1354-1013 SN - 1365-2486 VL - 26 IS - 11 SP - 6326 EP - 6337 PB - Wiley CY - Hoboken ER -