TY - JOUR A1 - Rodriguez Piceda, Constanza A1 - Scheck-Wenderoth, Magdalena A1 - Bott, Judith A1 - Gomez Dacal, Maria Laura A1 - Cacace, Mauro A1 - Pons, Michael A1 - Prezzi, Claudia A1 - Strecker, Manfred T1 - Controls of the Lithospheric Thermal Field of an Ocean-Continent Subduction Zone BT - the Southern Central Andes JF - Lithosphere / Geological Society of America N2 - In an ocean-continent subduction zone, the assessment of the lithospheric thermal state is essential to determine the controls of the deformation within the upper plate and the dip angle of the subducting lithosphere. In this study, we evaluate the degree of influence of both the configuration of the upper plate (i.e., thickness and composition of the rock units) and variations of the subduction angle on the lithospheric thermal field of the southern Central Andes (29 degrees-39 degrees S). Here, the subduction angle increases from subhorizontal (5 degrees) north of 33 degrees S to steep (similar to 30 degrees) in the south. We derived the 3D temperature and heat flow distribution of the lithosphere in the southern Central Andes considering conversion of S wave tomography to temperatures together with steady-state conductive thermal modeling. We found that the orogen is overall warmer than the forearc and the foreland and that the lithosphere of the northern part of the foreland appears colder than its southern counterpart. Sedimentary blanketing and the thickness of the radiogenic crust exert the main control on the shallow thermal field (<50km depth). Specific conditions are present where the oceanic slab is relatively shallow (<85 km depth) and the radiogenic crust is thin. This configuration results in relatively colder temperatures compared to regions where the radiogenic crust is thick and the slab is steep. At depths >50km, the temperatures of the overriding plate are mainly controlled by the mantle heat input and the subduction angle. The thermal field of the upper plate likely preserves the flat subduction angle and influences the spatial distribution of shortening. Y1 - 2022 U6 - https://doi.org/10.2113/2022/2237272 SN - 1941-8264 SN - 1947-4253 VL - 2022 IS - 1 PB - GeoScienceWorld CY - McLean ER - TY - JOUR A1 - Rodriguez Piceda, Constanza A1 - Scheck-Wenderoth, Magdalena A1 - Cacace, Mauro A1 - Bott, Judith A1 - Strecker, Manfred T1 - Long-Term Lithospheric Strength and Upper-Plate Seismicity in the Southern Central Andes, 29 degrees-39 degrees S JF - Geochemistry, geophysics, geosystems N2 - We examined the relationship between the mechanical strength of the lithosphere and the distribution of seismicity within the overriding continental plate of the southern Central Andes (SCA, 29 degrees-39 degrees S), where the oceanic Nazca Plate changes its subduction angle between 33 degrees S and 35 degrees S, from subhorizontal in the north (<5 degrees) to steep in the south (similar to 30 degrees). We computed the long-term lithospheric strength based on an existing 3D model describing variations in thickness, density, and temperature of the main geological units forming the lithosphere of the SCA and adjacent forearc and foreland regions. The comparison between our results and seismicity within the overriding plate (upper-plate seismicity) shows that most of the events occur within the modeled brittle domain of the lithosphere. The depth where the deformation mode switches from brittle frictional to thermally activated ductile creep provides a conservative lower bound to the seismogenic zone in the overriding plate of the study area. We also found that the majority of upper-plate earthquakes occurs within the realm of first-order contrasts in integrated strength (12.7-13.3 log Pam in the Andean orogen vs. 13.5-13.9 log Pam in the forearc and the foreland). Specific conditions characterize the mechanically strong northern foreland of the Andes, where seismicity is likely explained by the effects of slab steepening. KW - subduction zone KW - Andes KW - rheology KW - seismicity KW - flat-slab Y1 - 2022 U6 - https://doi.org/10.1029/2021GC010171 SN - 1525-2027 VL - 23 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Sippel, Judith A1 - Meessen, Christian A1 - Cacace, Mauro A1 - Mechie, James A1 - Fishwick, Stewart A1 - Heine, Christian A1 - Scheck-Wenderoth, Magdalena A1 - Strecker, Manfred T1 - The Kenya rift revisited BT - insights into lithospheric strength through data-driven 3-D gravity and thermal modelling JF - Solid earth N2 - We present three-dimensional (3-D) models that describe the present-day thermal and rheological state of the lithosphere of the greater Kenya rift region aiming at a better understanding of the rift evolution, with a particular focus on plume-lithosphere interactions. The key methodology applied is the 3-D integration of diverse geological and geophysical observations using gravity modelling. Accordingly, the resulting lithospheric-scale 3-D density model is consistent with (i) reviewed descriptions of lithological variations in the sedimentary and volcanic cover, (ii) known trends in crust and mantle seismic velocities as revealed by seismic and seismological data and (iii) the observed gravity field. This data-based model is the first to image a 3-D density configuration of the crystalline crust for the entire region of Kenya and northern Tanzania. An upper and a basal crustal layer are differentiated, each composed of several domains of different average densities. We interpret these domains to trace back to the Precambrian terrane amalgamation associated with the East African Orogeny and to magmatic processes during Mesozoic and Cenozoic rifting phases. In combination with seismic velocities, the densities of these crustal domains indicate compositional differences. The derived lithological trends have been used to parameterise steady-state thermal and rheological models. These models indicate that crustal and mantle temperatures decrease from the Kenya rift in the west to eastern Kenya, while the integrated strength of the lithosphere increases. Thereby, the detailed strength configuration appears strongly controlled by the complex inherited crustal structure, which may have been decisive for the onset, localisation and propagation of rifting. Y1 - 2017 U6 - https://doi.org/10.5194/se-8-45-2017 SN - 1869-9510 SN - 1869-9529 VL - 8 SP - 45 EP - 81 PB - Copernicus CY - Göttingen ER - TY - GEN A1 - Sippel, Judith A1 - Meeßen, Christian A1 - Cacace, Mauro A1 - Mechie, James A1 - Fishwick, Stewart A1 - Heine, Christian A1 - Scheck-Wenderoth, Magdalena A1 - Strecker, Manfred T1 - The Kenya rift revisited BT - insights into lithospheric strength through data-driven 3-D gravity and thermal modelling T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - We present three-dimensional (3-D) models that describe the present-day thermal and rheological state of the lithosphere of the greater Kenya rift region aiming at a better understanding of the rift evolution, with a particular focus on plume-lithosphere interactions. The key methodology applied is the 3-D integration of diverse geological and geophysical observations using gravity modelling. Accordingly, the resulting lithospheric-scale 3-D density model is consistent with (i) reviewed descriptions of lithological variations in the sedimentary and volcanic cover, (ii) known trends in crust and mantle seismic velocities as revealed by seismic and seismological data and (iii) the observed gravity field. This data-based model is the first to image a 3-D density configuration of the crystalline crust for the entire region of Kenya and northern Tanzania. An upper and a basal crustal layer are differentiated, each composed of several domains of different average densities. We interpret these domains to trace back to the Precambrian terrane amalgamation associated with the East African Orogeny and to magmatic processes during Mesozoic and Cenozoic rifting phases. In combination with seismic velocities, the densities of these crustal domains indicate compositional differences. The derived lithological trends have been used to parameterise steady-state thermal and rheological models. These models indicate that crustal and mantle temperatures decrease from the Kenya rift in the west to eastern Kenya, while the integrated strength of the lithosphere increases. Thereby, the detailed strength configuration appears strongly controlled by the complex inherited crustal structure, which may have been decisive for the onset, localisation and propagation of rifting. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 644 KW - east-african rift KW - cenozoic Turkana depression KW - seismic velocity structure KW - Northern Kenya KW - upper-mantle KW - Mozambique belt KW - continental lithosphere KW - crustal structure KW - structure beneath KW - wave tomography Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418221 SN - 1866-8372 IS - 644 SP - 45 EP - 81 ER -