TY - THES A1 - Brinkmann, Martin T1 - Benetzung lateral strukturierter Oberflächen Y1 - 2002 ER - TY - JOUR A1 - Tremel, Kim A1 - Fischer, Florian S. U. A1 - Kayunkid, Navaphun A1 - Di Pietro, Riccardo A1 - Tkachov, Roman A1 - Kiriy, Anton A1 - Neher, Dieter A1 - Ludwigs, Sabine A1 - Brinkmann, Martin T1 - Charge transport anisotropy in highly oriented thin films of the acceptor polymer P(NDI2OD-T2) JF - dvanced energy materials N2 - The nanomorphology of the high mobility polymer poly{[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenedicarboximide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} P(NDI2OD-T2) in thin films is explored as a function of different annealing conditions and correlated to optical and electrical properties. While nanofibrils with face-on orientation in form I are obtained directly after spin-coating and annealing below the melt transition temperature, clear evidence of lamellar structures is found after melt-annealing followed by slow cooling to room temperature. Interestingly these structural changes are accompanied by distinct changes in the absorption patterns. Electron diffraction measurements further show clear transitions towards predominant edge-on oriented chains in form II upon melt-annealing. Large-scale alignment with dichroic ratios up to 10 and improved order is achieved by high temperature rubbing and subsequent post-rubbing annealing. These highly oriented morphologies allow anisotropic in-plane charge transport to be probed with top-gate transistors parallel and perpendicular to the polymer chain direction. Mobilities up to 0.1 cm(2) V-1 s(-1) are observed parallel to the polymer chain, which is up to 10 times higher than those perpendicular to the polymer chain. Y1 - 2014 U6 - https://doi.org/10.1002/aenm.201301659 SN - 1614-6832 SN - 1614-6840 VL - 4 IS - 10 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Fischer, Florian S. U. A1 - Trefz, Daniel A1 - Back, Justus A1 - Kayunkid, Navaphun A1 - Tornow, Benjamin A1 - Albrecht, Steve A1 - Yager, Kevin G. A1 - Singh, Gurpreet A1 - Karim, Alamgir A1 - Neher, Dieter A1 - Brinkmann, Martin A1 - Ludwigs, Sabine T1 - Highly Crystalline Films of PCPDTBT with Branched Side Chains by Solvent Vapor Crystallization: Influence on Opto-Electronic Properties JF - Advanced materials N2 - PCPDTBT, a marginally crystallizable polymer, is crystallized into a new crystal structure using solvent-vapor annealing. Highly ordered areas with three different polymer-chain orientations are identified using TEM/ED, GIWAXS, and polarized Raman spectroscopy. The optical and structural properties differ significantly from films prepared by standard device preparation protocols. Bilayer solar cells, however, show similar performance. Y1 - 2015 U6 - https://doi.org/10.1002/adma.201403475 SN - 0935-9648 SN - 1521-4095 VL - 27 IS - 7 SP - 1223 EP - 1228 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Ligorio, G. A1 - Nardi, M. V. A1 - Steyrleuthner, Robert A1 - Ihiawakrim, D. A1 - Crespo-Monteiro, N. A1 - Brinkmann, Martin A1 - Neher, Dieter A1 - Koch, N. T1 - Metal nanoparticle mediated space charge and its optical control in an organic hole-only device JF - Applied physics letters N2 - We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 10(4) due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contrast to the previous speculations, electrical bistability in such devices was not observed. (C) 2016 AIP Publishing LLC. Y1 - 2016 U6 - https://doi.org/10.1063/1.4945710 SN - 0003-6951 SN - 1077-3118 VL - 108 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Brinkmann, Kai Oliver A1 - Becker, Tim A1 - Zimmermann, Florian A1 - Kreusel, Cedric A1 - Gahlmann, Tobias A1 - Theisen, Manuel A1 - Haeger, Tobias A1 - Olthof, Selina A1 - Tückmantel, Christian A1 - Günster, M. A1 - Maschwitz, Timo A1 - Göbelsmann, Fabian A1 - Koch, Christine A1 - Hertel, Dirk A1 - Caprioglio, Pietro A1 - Peña-Camargo, Francisco A1 - Perdigón-Toro, Lorena A1 - Al-Ashouri, Amran A1 - Merten, Lena A1 - Hinderhofer, Alexander A1 - Gomell, Leonie A1 - Zhang, Siyuan A1 - Schreiber, Frank A1 - Albrecht, Steve A1 - Meerholz, Klaus A1 - Neher, Dieter A1 - Stolterfoht, Martin A1 - Riedl, Thomas T1 - Perovskite-organic tandem solar cells with indium oxide interconnect JF - Nature N2 - Multijunction solar cells can overcome the fundamental efficiency limits of single-junction devices. The bandgap tunability of metal halide perovskite solar cells renders them attractive for multijunction architectures(1). Combinations with silicon and copper indium gallium selenide (CIGS), as well as all-perovskite tandem cells, have been reported(2-5). Meanwhile, narrow-gap non-fullerene acceptors have unlocked skyrocketing efficiencies for organic solar cells(6,7). Organic and perovskite semiconductors are an attractive combination, sharing similar processing technologies. Currently, perovskite-organic tandems show subpar efficiencies and are limited by the low open-circuit voltage (V-oc) of wide-gap perovskite cells(8) and losses introduced by the interconnect between the subcells(9,10). Here we demonstrate perovskite-organic tandem cells with an efficiency of 24.0 per cent (certified 23.1 per cent) and a high V-oc of 2.15 volts. Optimized charge extraction layers afford perovskite subcells with an outstanding combination of high V-oc and fill factor. The organic subcells provide a high external quantum efficiency in the near-infrared and, in contrast to paradigmatic concerns about limited photostability of non-fullerene cells(11), show an outstanding operational stability if excitons are predominantly generated on the non-fullerene acceptor, which is the case in our tandems. The subcells are connected by an ultrathin (approximately 1.5 nanometres) metal-like indium oxide layer with unprecedented low optical/electrical losses. This work sets a milestone for perovskite-organic tandems, which outperform the best p-i-n perovskite single junctions(12) and are on a par with perovskite-CIGS and all-perovskite multijunctions(13). Y1 - 2022 U6 - https://doi.org/10.1038/s41586-022-04455-0 SN - 0028-0836 SN - 1476-4687 VL - 604 IS - 7905 SP - 280 EP - 286 PB - Nature Research CY - Berlin ER -